Waterborne calcium and nitrite interaction: survival, growth, hematological and metabolic parameters in silver catfish

  • Gabriel Cardoso NEVES Universidade Federal do Rio Grande (FURG), Instituto de Oceanografia (IO), Laboratório de Aquicultura Continental (LAC)
  • Carine de Freitas SOUZA Universidade Federal de Santa Maria - UFSM, Departamento de Fisiologia e Farmacologia http://orcid.org/0000-0001-9978-0454
  • Alessandro Casale dos SANTOS Universidade Federal de Santa Maria - UFSM, Departamento de Fisiologia e Farmacologia http://orcid.org/0000-0002-4275-7074
  • Bernardo BALDISSEROTTO Universidade Federal de Santa Maria - UFSM, Departamento de Fisiologia e Farmacologia http://orcid.org/0000-0002-8770-0100
  • Jane Mello LOPES Universidade Federal do Maranhão − UFMA, Centro de Ciências Agrárias e Ambientais


The objective of this study was to determine the effect of different waterborne nitrite (NO2-) and calcium (Ca2+) levels on growth, biochemical and hematological parameters of silver catfish juvenile (Rhamdia quelen). Fish were submitted to low (0.05 mg L-1) or high (1.3 mg L-1) NO2 and low (7 mg L-1) or high (14 mg L-1) Ca2+ levels (four replicates) for 60 days. At the end of the experimental period, fish exposed to high NO2- showed lower weight gain, biomass and specific growth rate than those maintained at low NO2, irrespective of Ca2+ levels. Fish exposed to high NO2/low Ca2+ presented higher lactate levels in the muscle than control fish, but an increase of waterborne Ca2+ levels avoided this increase. Fish kept at high NO2/high Ca2+ showed higher lactate levels in the liver than those exposed to low NO2/high Ca2+. Exposure to high NO2 or high Ca2+ alone reduced hepatic glycogen, protein and glucose levels. Fish kept at high NO2/high Ca2+ presented a decrease in hemoglobin levels compared to those kept at low NO2/high Ca2+. Therefore, the use of 14 mg L-1 Ca2+ in water did not minimize the toxicity of nitrite for Ramdia quelen.


ATWOOD, H.L.; FONTENOT, Q.C.; TOMASSO, J.R.; ISELY, J.J. 2001 Toxicity of nitrite to Nile tilapia:
effect of fish size and environmental chloride. North American Journal of Aquaculture, 63(1):49-51

AVILEZ, I.M.; AGUIAR, L.H.; ALTRAN, A.E.; MORAES, G. 2004 Acute toxicity of nitrite to matrinxã, Brycon cephalus (Günther, 1869),(Teleostei-Characidae). Ciência Rural, 34(6):1753-1756.

AVILEZ, I.M.; AGUIAR, L.H.; HORI, T.S.;MORAES,G. 2012 Metabolic responses of matrinxã, Brycon
amazonicus (Spix & Agassiz, 1829), exposed to environmental nitrite. Aquaculture Research,

BALDISSEROTTO, B. 2009 Piscicultura continental no Rio Grande do Sul: Situação atual, problemas
e perspectivas para o futuro. Ciência Rural, 39(1):291-299.

BALDISSEROTTO, B.; MARTOS-SITCHA, J.A.;MENEZES, C.C.; TONI, C.; PRATI, R.L.; GARCIA, L.O.; SALBEGO, J.; MANCERA, J.M.; MARTÍNEZ-RODRÍGUEZ, G. 2014 The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquatic Toxicology, 152 (1):341–352.

BIDINOTTO, P.M.; MORAES, G.; SOUZA, R.H.S. 1997 Hepatic glycogen and glucose in eight tropical freshwater teleost fish: a procedure for field determinations of micro samples. Boletim Técnico do CEPTA, 10 (1):53-60.

BOUDREAUX, P.J.; FERRARA, A.M.; FONTENOT,Q.C. 2007 Chloride inhibition of nitrite uptake for
non-teleost Actinopterygiian fishes. Comparative Biochemistry and Physiology. Part A: Molecular&Integrative Physiology, 147(2):420-423.

BOYD, C.E. 1998 Water quality for pond aquaculture.Research and Development Series No. 43.
International Center for Aquaculture and Aquatic Environments. Alabama, Auburn University. 37p.

CIJI, A.; SAHU, N.P.; PAL, A.K.; AKHTAR, M.S.2013 Physiological changes in Labeo rohita during nitrite exposure: detoxification through dietary vitamin E. Comparative Biochemistry and
Physiology. Part C: Toxicology & Pharmacology,158(2):122-129.

CIJI, A.; SAHU, N.P.; PAL, A.K.; AKHTAR, M.S.; TINCY, V.; MISHAL, P.; DAS, P.2014 Effect of
dietary vitamin E and nitrite exposure on growth and metabolic variables of Labeo rohita juveniles.National Academy Science Letters, 37(2):123-129.

COLT, J.; LUDWIG, R.; TCHOBANOGLOUS, G.; CECH JR, J.J. 1981 The effects of nitrite on the short-term growth and survival of channel catfish, Ictalurus punctatus. Aquaculture, 24(1):111-122.

COLT, J. 2002. List of spreadsheets prepared as a complement. In: WEDEMEYER G. A.(editor)Fish
Hatchery Management, 2nd ed. American Fisheries Society. 751p.

COPATTI, C.E.; GARCIA, L.O.; CUNHA, M.A.; BALDISSEROTTO, B.; KOCHHANN, D.2011a Interaction of water hardness and pH on growth of silver catfish, Rhamdia quelen, juveniles. Journal of the World Aquaculture Society, 42(4):580-585.

COPATTI, C.E.; GARCIA, L.O.; KOCHHANN,D . ; C U N H A , M . A . ; B E C K E R , A . G . ;BALDISSEROTTO, B. 2011b Low water hardness and pH affect growth and survival of silver catfish juveniles. Ciência Rural, 41(8):1482-1487.

CUNHA, M.A.; ZEPPENFELD, C.C.; GARCIA, L . O . ; L O R O , V . L . ; F O N S E C A , M . B . ;
EMANUELLI, T.; VEECK, A.P.L.; COPATTI, C.E.; BALDISSEROTTO, B. 2010 Anesthesia of silver catfish with eugenol: time of induction, cortisol response and sensory analysis of fillet. Ciência Rural, 40(10):2107-2114.

EATON, A.D.; CLESCERI, L.S.; RICE, E.W.; GREENBERG, A.E.; FRANSON, M.A.H. 2005 Standard methods for the examination of water and wastewater. Centennial Edition. 21st ed. Washington: American Public Health Association. American Water Works Association and Water Environment Federation, 1368p.

FERREIRA, F.W.; CUNHA R.B.; BALDISSEROTTO, B. 2013 The survival and growth of juvenile silver catfish, Rhamdia quelen, exposed to different NH3 and hardness levels. Journal of the World Aquaculture Society, 44(2): 293-299.

FRANCES, J.; ALLAN, G.L.; NOWAK, B.F. 1998 The effects of nitrite on the short-term growth
of silver perch (Bidyanus bidyanus). Aquaculture, 163(1-2):63-72.

GONZALEZ, R.J. 1996 Ion regulation in ion poor waters of low pH. In: VAL, A.L.; ALMEIDAVAL, V.M.F.; RANDALL, D.J. Physiology and Biochemistry of the Fishes of the Amazon. Manaus,
INPA. 420p.

HARROWER, J.R.; BROWN, C.H. 1972 Blood lactic acid - A micromethod adapted to field collection of microliter samples. Journal of Applied Physiology, 32(5):709-711.

HAWKINS, A.J.S. 1991 Protein turnover: a functional appraisal. Functional Ecology,5(2):222-233.

JENSEN, F.B. 2003 Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology. Part A: Molecular and Integrative Physiology, 135(1): 9-24.

KROUPOVA, H.; MACHOVA, J.; SVOBODOVA, Z. 2005 Nitrite influence on fish: a review. Veterinary Medicine, 5(11):461–471.

KROUPOVA, H.; MACHOVA, J.; PIACKOVA, V.; BLAHOVA, J.; DOBSIKOVA, R.; NOVOTNY,L.; SVOBODOVA, Z. 2008 Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus
mykiss). Ecotoxicology and Environmental Safety,71(3):813-820.

KWONG, R. W.; KUMAI, Y.; TZANEVA, V.;AZZI, E.; HOCHHOLD, N.; ROBERTSON, C.;PELSTER, B.; PERRY, S.F. 2016 Inhibition of calcium uptake during hypoxia in developing zebrafish is mediated by hypoxia-inducible factor. Journal of Experimental Biology, 219(1):3988-3995.

LEFEVRE, S.; JENSEN, F.B.; HUONG, D.T.T.; ANG, T.; PHUONG, N.T.; BAYLEY, M. 2011 Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative airbreathing fish Pangasianodon hypophthalmus.Aquatic Toxicology, 104(1-2):86-93.

LIMA, R.L.; BRAUN, N.; KOCHHANN, D.; LAZZARI, R.; NETO, J.R.; MORAES, B.S.;LORO, V.L.;BALDISSEROTTO, B. 2011 Survival, growth and metabolic parameters of silver catfish, Rhamdia quelen, juveniles exposed to different waterborne nitrite levels. Neotropical Ichthyology, 9(1):147-152.

LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L.;RANDALL, R.J. 1951 Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193(1):265-275.

MADISON, B.N.; WANG, Y.S. 2006 Haematological responses of acute nitrite exposure in walleye
(Sander vitreus). Aquatic Toxicology, 79(1):16-23.

MORAES, G.; CATTONY, E.B.; SOUZA, R.H. 1998 Metabolic responses of the teleost Hoplias malabaricus to high levels of environmental nitrite. Revista Brasileira de Biologia, 58(1):105–113.

PARK, J.T.; JOHNSON, M.J. 1949 A submicro determination of glucose. Journal of Biological
Chemistry, 181(1): 149-151.

THRALL, M.A. 2006 Hematologia e Bioquímica Clínica Veterinária. Hematologia de Peixes, 19(1): 265-276.

TILAK, K.S.; VEERAIAH, K.; RAJU, J.M.P. 2007 Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus).Journal of Environmental Biology, 28(1):45-47.

TOMASSO, J.R., WRIGHT, M.I.; SIMCO, B.A.; DAVIS, K.B. 1980 Inhibition of nitrite-induced
toxicity in channel catfish by calcium chloride and sodium chloride. The Progressive FishCulturist, 42(3):144-146.

TOMASSO, J.R.; GROSELL, M. 2005 Physiological basis for large differences in resistance to nitrite
among freshwater and freshwater-acclimated euryhaline fishes. Environmental Science &
Technology, 39(1):98-102.

VERDOUW, H.; VAN ECHTELD, C.J.A.; DEKKERS,E.M. J. 1977 Ammonia determination based on
indophenol formation with sodium salicylate.Water Research, 12(6):399-402.

WEIRICH, C.R.; TOMASSO, J.R.; SMITH, T.I.J. 1993 Toxicity of ammonia and nitrite to sunshine
bass in selected environments. Journal of Aquatic Animal Health, 5(1):64-72.

WOOD, C.M.; MCDONALD, D.G. 1988 Impact of environmental acidification on gill function in
fish. In: RYANS, R. C. (Ed). Fish physiology, fish toxicology, and fisheries management.Proceedings of an international symposium Guangzhou, PRC. U.S. Environmental Protection Agency. 162-182p.

chronic nitrite toxicity in juvenile pike-perch (Sander lucioperca) and its compensation by chloride. Comparative Biochemistry and Physiology. Part C, Toxicology & Pharmacology, 157(4):352-360.

YANBO, W.; WENJU, Z.; WEIFEN, L.; ZIRONG,X. 2006 Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry, 32(1):49-54.

ZALL, D.M.; FISHER, D.; GARNER, M.Q. 1956 Photometric determination of chlorides in water.
Analytical Chemistry, 28(1): 1665-1668.
How to Cite
NEVES, Gabriel Cardoso et al. Waterborne calcium and nitrite interaction: survival, growth, hematological and metabolic parameters in silver catfish. Boletim do Instituto de Pesca, [S.l.], v. 43, n. 3, p. 408–416, sep. 2017. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1217>. Date accessed: 25 may 2022. doi: https://doi.org/10.20950/1678-2305.2017v43n3p408.