RECOVERY OF FIBRINOLYTIC AND COLLAGENOLYTIC ENZYMES FROM FISH AND SHRIMP BYPRODUCTS: POTENTIAL SOURCE FOR BIOMEDICAL APPLICATIONS

  • Caio Rodrigo Dias Assis Universidade Federal de Pernambuco – UFPE, Laboratório de Enzimologia – LABENZ, Departamento de Bioquímica http://orcid.org/0000-0001-9441-1959
  • Vagne de Melo Oliveira Universidade Federal Rural de Pernambuco – UFRPE, Laboratório de Tecnologia de Produtos Bioativos – LABTECBIO, Departamento de Morfologia e Fisiologia Animal – DMFA / Universidade Federal de Pernambuco – UFPE, Laboratório de Enzimologia – LABENZ, Departamento de Bioquímica
  • Jéssica Costa Silva Universidade Federal Rural de Pernambuco – UFRPE, Laboratório de Tecnologia de Produtos Bioativos – LABTECBIO, Departamento de Morfologia e Fisiologia Animal – DMFA
  • Quesia Jemima Silva Universidade Federal Rural de Pernambuco – UFRPE, Laboratório de Tecnologia de Produtos Bioativos – LABTECBIO, Departamento de Morfologia e Fisiologia Animal – DMFA
  • Ranilson de Souza Bezerra Universidade Federal de Pernambuco – UFPE, Laboratório de Enzimologia – LABENZ, Departamento de Bioquímica http://orcid.org/0000-0001-6657-3782
  • Ana Lúcia Figueiredo Porto Universidade Federal Rural de Pernambuco – UFRPE, Laboratório de Tecnologia de Produtos Bioativos – LABTECBIO, Departamento de Morfologia e Fisiologia Animal – DMFA http://orcid.org/0000-0001-5561-5158

Abstract

Fish and shrimp industries generate a significant amount of by-products. These by-products can be used for the extraction of enzymes of biomedical interest, such as fibrinolytic and collagenolytic. Thus, this work aimed to perform a screening of fish and shrimp byproducts as sources of enzymes with fibrinolytic and collagenolytic activities and to characterize the biochemical properties of crude extracts with collagenolytic activity from Cichla ocellaris residues. Fibrinolytic enzymes were recovered with activities between 5.51 ± 0.02 U.mL-1 (Caranx crysos) and 56.16 ± 0.42 U.mL-1 (Litopenaeus vannamei), while collagenolytic enzymes were detected in a range between 6.79 ± 0.00 U.mg-1 (Trachurus lathami) and 94.35 ± 0.02 U.mg-1 (C. ocellaris). After collagenolytic screening, the selected species was C. ocellaris, being subjected to a preheating, which culminated with an increase of enzymatic activity of 35.07% (up to 127.44 ± 0.09 U.mg-1). The optimal collagenolytic activity recovered from C. ocellaris byproducts was 55 °C (thermostable between 25 and 60 °C) and 7.5 (stable between 6.5 and 11.5) for temperature and pH evaluations, respectively. The kinetic parameters were determined, obtaining Km of 5.92 mM and Vmax of 294.40 U.mg-1. The recovered enzyme was sensitive to the Cu2+, Hg2 and Pb2+ ions, being partially inhibited by phenylmethylsulphonyl fluoride (PMSF), N-p-tosyl-L-lysin chloromethyl ketone (TLCK) and Benzamidine. Furthermore, it was able to cleave native type I collagen, the most important type for industry. Thus, the recovery of biomolecules, besides offering to the industry an alternative source of active molecules, contributes to the reduction of the environmental impact, adding value to the fish product and providing a new source of income.

References

Alipour, H.; RAZ, A.; Zakeri, S.; Djadid, N.D. 2017. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pacific Journal of Tropical Biomedicine, 6(11): 975-981. http://dx.doi.org/10.1016/j.apjtb.2016.07.017

Amar, S.; Smith, L.; Fields, G.B. 2017. Matrix metalloproteinase collagenolysis in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(11): 1940-1951. http://dx.doi.org/10.1016/j.bbamcr.2017.04.015

Amiral, J.; Seghatchian, J. 2017. Monitoring of anticoagulant therapy in cancer patients with thrombosis and the usefulness of blood activation markers. Transfusion and Apheresis Science, 56(3): 279-286. https://doi.org/10.1016/j.transci.2017.05.010

Barbosa, R.G.; Borghesan, A.C.; Cerqueira, N.F.; Hussni, C.A.; Alves, A.L.G.; Nicoletti, J.L.M.; Fonseca, B.P.A. 2009. Fisiopatologia da trombose da veia jugular em equinos: revisão. Veterinária e Zootecnia, 16(1): 26-37.

Behl, T.; Velpandian, T.; Kotwani, A. 2017. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy. Vascular Pharmacology, 92(5): 1-5.

Bezerra, R.S.; Buarque, D.S.; Amaral, I.P.G.; Castro, P.F.; Espósito, T.S.; Carvalho JR, L.B. 2006. Propriedades e aplicações biotecnológicas das proteases de vísceras de peixes. In: Cyrino, J.E.P.; Urbinati, E.C. (Eds.). AquaCiência 2004 Tópicos Especiais em Biologia Aquática e Aquicultura. Artpoint Produção Gráfica, Campinas. p. 261 –275.

Byun, H.G.; Park, P.J.; Sung, N.J.; Kim, S.K. 2002. Purification and characterization of a serine proteinase from the tuna pyloric caeca. Journal of Food Biochemistry, 26(6): 479–494.

Cahu, T.B.; Santos, S.D.; Mendes, A.; Córdula, C.R.; Chavante, S.F.; Carvalho, L.B.; Nader, H.B.; Bezerra, R.S. 2012 Recovery of protein, chitin, carotenoids and glycosaminoglycans from pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochemistry, 47(4): 570–577. http://dx.doi.org/10.1016/j.procbio.2011.12.012

Chandrashekar, A.; Singh, G.; Garry, J.; Sikalas, N.; Labropoulos, N. 2018. Mechanical and biochemical role of fibrin within a venous thrombus. European Journal of Vascular and Endovascular Surgery, 55(3): 417-424. http://dx.doi.org/10.1016/j.ejvs.2017.12.002

Chen, J.; Li, L.; Yi, R.; Gao, R.; Ele, J. 2018. Release kinetics of Tilapia scale collagen I peptides during tryptic hydrolysis. Food Hydrocolloids, 77(4): 931-936.

Chu, Q.; Lopez, M.; Hayashy, K.; Lonescu, M.; Billinghurst, R.C.; JohnsoN, K.A., Poole A.R.; Markel, M.D. 2002. Elevation of a collagenase generated type II collagen neoepitope and proteoglycan epitopes in synovial fluid following induction of joint instability in the dog. Osteoarthritis Cartilage, 10(8): 662-669. http://dx.doi.org/10.1053/joca.2002.0812

Cicha, I. 2015. Thrombosis: novel nanomedical concepts of diagnosis and treatment. World Journal of Cardiology, 7(8): 434-441. http://dx.doi.org/10.4330/wjc.v7.i8.434.

Daboor, S.M.; Budge, S.M.; Ghaly, A.E.; Brooks, M.S.; Dave, D. 2010. Extraction and Purification of Collagenase Enzymes: A Critical Review. American Journal of Biochemistry and Biotechnology, 6(4): 239-263.

Daboor, S.M.; Budge, S.M.; Ghaly, A.E.; Brooks, M.S.; Dave, D. 2012. Isolation and activation of collagenase from fish processing waste. Advances in Bioscience and Biotechnology, 3(3): 191–203.

Fayyad, A.; Lapp, S.; Risha, E.; Pfankuche, V.M.; Rohn, K.; Barthel, Y.; Schaudien, D.; Baumgärtner, W.; Puf, C. 2018. Matrix metalloproteinases expression in spontaneous canine histiocytic sarcomas and its xenograft model. Veterinary Immunology and Immunopathology, 198(4): 54–64. http://dx.doi.org/10.1016/j.vetimm.2018.03.002

Freitas-Júnior, A.C.V.; Costa, H.M.S.; Icimoto, M.Y.; Hirata, I.Y.; Marcondes, M.; CarvalhO, L.B.; Oliveira. V.; Bezerra, R.S. 2012. Giant Amazonian fish pirarucu (Arapaima gigas): Its viscera as a source of thermostable trypsin. Food Chemistry, 133(4): 1596-1602. http://dx.doi.org/10.1016/j.foodchem.2012.02.056

Guedes, A.F.; Carvalho, F.A.; Domingues, M.M.; Macrae, F.L.; McPherson, H.R.; SantoS, N.C.; Ariёns, R.A.S. 2018. Sensing adhesion forces between erythrocytes and γ’ fibrinogen, modulating fibrin clot architecture and function. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3): 909-918. http://dx.doi.org/10.1016/j.nano.2018.01.006

Hayashi, K.; Kim, S.Y.; Lansdowne, J.L.; Kapatkin, A.; Déjardin, L.M. 2009. Evaluation of a collagenase generated osteoarthritis biomarker in naturally occurring canine cruciate disease. Veterinary Surgery, 38(1): 117-21.

Hayet, B.K.; Rym, N.; Ali, B.; Sofiane, G.; Moncef, N. 2011. Low molecular weight serine protease from the viscera of sardinelle (Sardinella aurita) with collagenolytic activity: Purification and characterization. Food Chemistry, 124(3): 788–794.

Hernandez-herrero, M.M.; DufloS, G.; Malle, P.; Bouquelet, S. 2003. Collagenase activity and protein hydrolysis as related to spoilage of iced cod (Gadus morhua). Food Research International, 36(2): 141–147. http://dx.doi.org/10.1016/S0963-9969(02)00129-1

Jayes, F.L.; Liu, B.; Moutos, F.T.; Kuchibhatla, M.; Guilak, F.; leppert, P.C. 2016. Loss of stiffness in collagen-rich uterine fibroids after digestion with purified collagenase Clostridium histolyticum. American Journal of Obstetrics and Gynecology, 215(5): 596.e1–596.e8. http://dx.doi.org/10.1016/j.ajog.2016.05.006ur

Karakurt, A.; Başbuğ, H.S. 2015. Prosthetic heart valve thrombosis treated with low-dose slow-infusion fibrinolytic therapy. Journal of Cardiology Cases, 12(1): 12-15.

Kim, S. K.; Park, P. J.; Kim, J.B.; Shahidi, F. 2002. Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. Journal of biochemistry and molecular biology, 35(2): 165-171.

Kristjánsson, M. M.; Gudmundsdóttir S.; Fox, J. W.; Bjarnason, J. B. 1995. Characterization of collagenolytic serine proteinase from the Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology - Part B, 110(4): 707–717.

Leite, S.B.P.; Sucasas, L.F.A.; Oetterer, M. 2016. Resíduos da comercialização de pescado marinho – volume de descarte e aspectos microbiológicos. Revista Brasileira de Tecnologia Agroindustrial, 10(1): 2112-2125.

Lima, C.A.; Campos, J.F.; Lima Filho, J.L.; Converti, A.; Carneiro da Cunha, M.G.; Porto, A.L.F. 2014. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology, 52(7): 4459–4466. http://dx.doi.org/10.1007/s13197-014-1463-y

Lima-Junior, E.M.; Picollo, N.S.; Miranda, M.J.B.; Ribeiro, W.L.C.; Alves, A.P.N.N.; Ferreira, G.E.; Parente, E.A.; Moraes Filho, M.O. 2017. Uso da pele de tilápia (Oreochromis niloticus), como curativo biológico oclusivo, no tratamento de queimaduras. Revista Brasileira de Queimaduras, 16(1): 10-17.

Moore, S.; Stein, W. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. The Journal of Biological Chemistry, 211(2): 907–913.

Mukherjee, J.; Webster, N.; Llewellyn, L.E. 2009. Purification and Characterization of a Collagenolytic Enzyme from a Pathogen of the Great Barrier Reef Sponge, Rhopaloeides odorabile. PLoS ONE, 4(9): 1–5.

Murado, M.A.; González, M.P.; Vázquez, J.A. 2009. Recovery of proteolytic and collagenolytic activities from viscera by-products of Rayfish (Raja clavata). Mar Drugs, 7(4): 803–815. http://dx.doi.org/10.3390/md7040803

Oliveira, V.M.; Assis, C.R.D.; Herculano, P.N.; Cavalcanti, M.T.H.; Bezerra, R.S.; Porto, A.L.F. 2017a. Collagenase from smooth weakfish: extraction, partial purification, characterization and collagen specificity test for industrial application. Boletim do Instituto de Pesca, 43(1): 52–64. http://dx.doi.org/10.20950/1678-2305.2017v43n1p52

Oliveira, V.M., Carneiro Cunha, M.N.; Assis, C.R.D.; Nascimento, T.P.; HerculanO, P.N.; Cavalcanti, M.T.H.; Porto, A.L. 2017b. Colagenases de pescado e suas aplicações industriais. Pubvet, 11(3): 243-255. http://dx.doi.org/10.22256/pubvet.v11n3.243-255

Oliveira, V.M., Carneiro Cunha, M.N.; Nascimento, T.P.; Assis, C.R.D.; Bezerra, R.S.; Porto, A.L.F. 2017c. Collagen: general characteristics and production of bioactive peptides - a review with emphasis on byproducts of fish. ActaFish, 5(2): 70-82. http://dx.doi.org/10.2312/ActaFish.2017.5.2.70-82

Oliveira, V.M.; Nascimento, T.P.; Assis, C.R.D.; Bezerra, R.S.; Porto, A.L.F. 2017d. Study on enzymes of industrial interest in digestive viscera: Greater amberjack (Seriola dumerili). Journal of Coastal Life Medicine, 5(6): 233-238. http://dx.doi.org/10.12980/jclm.5.2017J6-300

Park, J.P.; Lee, S.H.; Byun, H.G.; Kim, S.H.; Kim, S.K. 2002. Purification and characterization of a collagenase from the mackerel, Scomber japonicus. Journal of biochemistry and molecular biology, 35(6): 576–582.

Roy, P.; Bernard, C.; Patrick, D. 1996. Purification, kinetical and molecular characterizations of a serine collagenolytic protease from green shore Crab (Carcinus maenas) digestive gland. Comparative Biochemistry and Physiology - Part B, 115(1): 87–95.

Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1): 76–85.

Souchet, N.; Laplante, S. 2011. Recovery and Characterization of a serine collagenolytic extract from Snow Crab (Chionoecetes opilio) by-products. Applied Biochemistry and Biotechnology, 163(6): 765–779. http://dx.doi.org/10.1007/s12010-010-9081-2

Sriket, C.; Benjakul, S.; Visessanguan, W.; Kishimura, H. 2011. Collagenolytic serine protease in fresh water prawn (Macrobrachium rosenbergii): Characteristics and its impact on muscle during iced storage. Food Chemistry, 124(1): 29–35.

Suphatharaprateep, W.; Cheirsilp, B.; Jongjareonrak, A. 2011. Production and properties of two collagenases from bacteria and their application for collagen extraction. New Biotechnology, 28(6): 649–655. http://dx.doi.org/10.1016/j.nbt.2011.04.003

Turkiewicz, M.; Galas, E.; Kalinowska, H. 1991. Collagenolytic serine proteinase from Euphausia superba dana (Antarctic Krill). Comparative Biochemistry and Physiology - Part B, 99(2): 359–371.

Teruel, S.R.L., Simpson, B.K. 1995. Characterization of the collagenolytic enzyme fraction from winter flounder (Pseudopleuronectes americanus). Comparative Biochemistry and Physiology - Part B, 112(1): 131-136.

Zini, E.; Franchini, M.; Guscetti, F.; Osto, M.; Kaufmann, K.; Ackermann, M.; Lutz, T.A.; Reusch, C.E. 2009. Assessment of six different collagenase-based methods to isolate feline pancreatic islets. Research in Veterinary Science, 87(3): 367–372.

Wang, S.; Wu, Y.; LIANG, T. 2011. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New biotechnology, 28(2): 196-202. http://dx.doi.org/10.1016/J.NBT.2010.09.003

Watts, A.E.; Nixon, A.J.; Yeager, A.E.; Mohammed, H.O. 2012. A collagenase gel/physical defect model for controlled induction of superficial digital flexor tendonitis. Equine Veterinary Journal, 44(5): 576–586. http://dx.doi.org/10.1111/j.2042-3306.2011.00471.x

Wu, G.P.; Chen, S.H.; Liu, G.M.; Yoshida, A.; Zhang, L.J.; Su, W.J.; Cao, M.J. 2010. Purification and characterization of a collagenolytic serine proteinase from the skeletal muscle of red sea bream (Pagrus major). Comparative Biochemistry and Physiology - Part B, 155(3): 281–287.
Published
2019-02-13
How to Cite
DIAS ASSIS, Caio Rodrigo et al. RECOVERY OF FIBRINOLYTIC AND COLLAGENOLYTIC ENZYMES FROM FISH AND SHRIMP BYPRODUCTS: POTENTIAL SOURCE FOR BIOMEDICAL APPLICATIONS. Boletim do Instituto de Pesca, [S.l.], v. 45, n. 1, feb. 2019. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1340>. Date accessed: 08 dec. 2019.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.