EXTRACTION OF COLLAGENOLYTIC ENZYME FROM FISH VISCERA BY PHASE PARTITIONING (PEG/CITRATE) AND ITS POTENTIAL FOR INDUSTRIAL APPLICATION

  • Jessica Costa SILVA Universidade Federal Rural de Pernambuco - UFRPE, Departamento de Morfologia e Fisiologia Animal - DMFA, Laboratório de Tecnologia de Produtos Bioativos - LABTECBIO. http://orcid.org/0000-0001-5358-2401
  • Luiz Henrique Svintiskas LINO Universidade Federal Rural de Pernambuco - UFRPE, Departamento de Morfologia e Fisiologia Animal - DMFA, Laboratório de Tecnologia de Produtos Bioativos - LABTECBIOO. http://orcid.org/0000-0002-0081-5862
  • Márcia Nieves CARNEIRO DA CUNHA Universidade Federal Rural de Pernambuco - UFRPE, Departamento de Morfologia e Fisiologia Animal - DMFA, Laboratório de Tecnologia de Produtos Bioativos - LABTECBIO. http://orcid.org/0000-0003-2744-6216
  • Juanize Matias da Silva BATISTA Universidade Federal Rural de Pernambuco - UFRPE, Departamento de Morfologia e Fisiologia Animal - DMFA, Laboratório de Tecnologia de Produtos Bioativos - LABTECBIO. http://orcid.org/0000-0001-7654-2533
  • Vagne Melo OLIVEIRA Universidade Federal Rural de Pernambuco - UFRPE, Departamento de Morfologia e Fisiologia Animal - DMFA, Laboratório de Tecnologia de Produtos Bioativos - LABTECBIO. http://orcid.org/0000-0003-0841-1974
  • Ana Lúcia Figueiredo PORTO Universidade Federal Rural de Pernambuco - UFRPE, Departamento de Morfologia e Fisiologia Animal - DMFA, Laboratório de Tecnologia de Produtos Bioativos - LABTECBIO. http://orcid.org/0000-0001-5561-5158

Abstract

Internal viscera fish are potential sources of protein biomolecules of biopharmaceutical interest. However, this residue is frequently discarded inappropriately. The possibility to obtain by products of higher added value is a reality. Inside this view attention must be given to processes for the recovery and extraction of target molecules. However, the high cost of processing these residues is one of the obstacles to their reuse; techniques that facilitate their handling and make the process cheaper are desirable, such as extraction in a two-phase aqueous system. Thus, the aim of this study was to extract collagenolytic enzymes from common snook (Centropomus undecimalis) using a two-phase aqueous system (polyethylene glycol/citrate), according to the 24 factorial design, using as variables: molar mass of PEG (MPEG), PEG concentration (CPEG), citrate concentration (CCIT), pH, still, considering purification factor (FP), partition coefficient (K), and yield (Y). The collagenolytic activity of the crude extract was 102.41 U mg-1, after partitioning, was purified 3.91 times (MPEG: 8000; CPEG: 20.0%; CCIT: 20.0% and pH 6.0). Inhibition (U mg-1) was observed in benzamidine (22.51), TLCK (21.05), TPCK (21.29), and PMSF (23.05), signaling to be a serine-protease. The results showed the advantage of this semipurification technique as concerns to the low cost of extraction and purification, adding value to the fishing source material and allocating the residues from its processing to the industry.

References

Abood, A.; Salman, A.M.M.; Abdelfattah, A.M.; El-Hakim, A.E.; Abdel-Aty, A.M.; Hashem, A.M. 2018. Purification and characterization of a new thermophilic collagenase from Nocardiopsis dassonvillei NRC2aza and its application in wound healing. International Journal of Biological Macromolecules, 116: 801-810. http://dx.doi.org/10.1016/j.ijbiomac.2018.05.030.

Amaral, Y.M.S.; Silva, O.S.; Oliveira, R.L.; Porto, T.S. 2020. Production, extraction, and thermodynamics protease partitioning from Aspergillus tamarii Kita UCP1279 using PEG/sodium citrate aqueous two-phase systems. Preparative Biochemistry & Biotechnology, 50(6): 619-626. http://dx.doi.org/10.1080/10826068.2020.1721535.

Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. 2003. Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. 2ª. ed. Campinas: Unicamp. 401p.

Bhagwat, P.; Dandge, P. 2018. Collagen and collagenolytic proteases: A review. Biocatalysis and Agricultural Biotechnology, 15: 43-55. http://dx.doi.org/10.1016/j.bcab.2018.05.005.

Chen-Roetling, J.; Cao, Y.; Peng, D.; Regan, R.F. 2019. Rapid loss of perihematomal cell viability in the collagenase intracerebral hemorrhage model. Brain Research, 1711: 91-96. http://dx.doi.org/10.1016/j.brainres.2019.01.014.

Concha-Frias, B.B.; Alvarez-González, C.A.; Gaxiola-Cortes, M.G.; Silva-Arancibia, A.E.; Toledo-Agüero, P.H.; Martínez-García, R.; Camarillo-Coop, S.; Jimenez-Martinez, L.D.; Arias-Moscoso, J.L. 2016. Partial characterization of digestive proteases in the Common snook Centropomus undecimalis. International Journal of Biology, 8(4): 1-11. http://dx.doi.org/10.5539/ijb.v8n4p1.

Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. 2019. A systematic reconsideration on proteases. International Journal of Biological Macromolecules, 128: 254-256. http://doi.org/10.1016/j.ijbiomac.2019.01.081.

Ideia, P.; Pinto, J.; Ferreira, R.; Figueiredo, L.; Spínola, V.; Castilho, P.C. 2020. fish processing industry residues: a review of valuable products extraction and characterization methods. Waste and Biomass Valorization, 11: 3223-3246. http://dx.doi.org/10.1007/s12649-019-00739-1.

Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; Hussain, H.I.; Ahmed, S.; Yuan, Z. 2016. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biological Procedures Online, 18: 1-18. http://dx.doi.org/10.1186/s12575-016-0048-8.

Jimenez-Martinez, L.D.; Alvarez-González, C.A.; Tovar-Ramírez, D.; Gaxiola, G.; Sanchez-Zamora, A.; Moyano, F.J.; Alarcón, F.J.; Marquez-Couturier, G.; Gisbert, E.; Contreras-Sánchez, W.M.; Perales-Garcia, N.; Arias-Rodrıguez, L.; Indy, J.R.; Páramo-Delgadillo, S.; Palomino-Albarran, I.G. 2012. Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis). Fish Physiology and Biochemistry, 38(2): 441-454. http://dx.doi.org/10.1007/s10695-011-9525-9.

Ketnawa, S.; Benjakul, S.; Ling, T.C.; Martínez-Alvarez, O.; Rawdkuen, S. 2013. Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application. Chemistry Central Journal, 7: 1-9. http://dx.doi.org/10.1186/1752-153X-7-79.

Kuepethkaew, S.; Sangkharak, K.; Benjakul, S.; Klomklao, S. 2017. Use of TPP and ATPS for partitioning and recovery of lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Journal of Food Science and Technology, 54: 3880-3891. http://dx.doi.org/10.1007/s13197-017-2844-9.

Kim, S.K.; Park, P.J.; Kim, J.B.; Shahidi, F. 2002. Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. Journal of Biochemistry and Molecular Biology, 35(2): 165-171. http://dx.doi.org/10.5483/bmbrep.2002.35.2.165.

Leong, Y.K.; Lan, J.C.-W.; Loh, H.-S.; Ling, T.C.; Ooi, C.W.; Show, P.L. 2015. Thermoseparating aqueous two-phase systems: Recent trends and mechanisms. Journal of Separation Science, 39(4): 640-647. http://dx.doi.org/10.1002/jssc.201500667.

Liu, Y.; Liu, Z.; Song, L.; Ma, Q.; Zhou, D.; Zhu, B.; Shahidi, F. 2019. Effects of collagenase type I on the structural features of collagen fibres from sea cucumber (Stichopus japonicus) body wall. Food Chemistry, 301: 1-7. http://dx.doi.org/10.1016/j.foodchem.2019.125302.

Nadar, S.S.; Pawar, R.G.; Rathod, V.K. 2017. Recent advances in enzyme extraction strategies: A comprehensive review. International Journal of Biological Macromolecules, 101: 931-957. http://dx.doi.org/10.1016/j.ijbiomac.2017.03.055.

Oliveira, V.M.; Assis, C.R.D.; Herculano, P.N.; Cavalcanti, M.T.H.; Bezerra, R.S.; Porto, A.L.F. 2017a. Collagenase from smooth weakfish: extraction, partial purification, characterization and collagen specificity test for industrial application. Boletim do Instituto de Pesca, 43(1): 52-64. http://dx.doi.org/10.20950/1678-2305.2017v43n1p52.

Oliveira, V.M.; Nascimento, T.P.; Assis, C.R.D.; Bezerra, R.S.; Porto, A.L.F. 2017b. Study on enzymes of industrial interest in digestive viscera: Greater amberjack (Seriola dumerili). Journal of Coastal Life Medicine, 5(6): 233-238. http://dx.doi.org/10.12980/jclm.5.2017J6-300.

Oliveira, V.M.; Carneiro Cunha, M.N.; Assis, C.R.D.; Nascimento, T.P.; Herculano, P.N.; Cavalcanti, M.T.H.; Porto, A.L. 2017c. Colagenases de pescado e suas aplicações industriais. Pubvet, 11(3): 243-255. http://dx.doi.org/10.22256/PUBVET.V11N3.243-255.

Oliveira, V.M.; Assis, C.R.D.; Silva, J.C.; Silva, Q.J.; Bezerra, R.S.; Porto, A.L.F. 2019. Recovery of fibrinolytic and collagenolytic enzymes from fish and shrimp byproducts: potential source for biomedical applications. Boletim do Instituto de Pesca, 45(1): 1-10. http://dx.doi.org/10.20950/1678-2305.2019.45.1.389.

Oliveira, V.M.; Cunha, M.N.C.; Assis, C.R.D.; Silva, J.M.; Nascimento, T.P.; Santos, J.F.; Duarte, C.A.L.; Marques, D.A.V.; Bezerra, R.S.; Porto, A.L.F. 2020. Separation and partial purification of collagenolytic protease from peacock bass (Cichla ocellaris) using different protocol: Precipitation and partitioning approaches. Biocatalysis and Agricultural Biotechnology, 24: 1-13. http://dx.doi.org/10.1016/j.bcab.2020.101509.

Park, J.P.; Lee, S.H.; Byun, H.G.; Kim, S.H.; Kim, S.K. 2002. Purification and characterization of a collagenase from the mackerel, Scomber japonicus. Journal of Biochemistry and Molecular Biology, 35(6): 576-582. http://dx.doi.org/10.5483/bmbrep.2002.35.6.576.

Phong, W.N.; Show, P.L.; Chow, Y.H.; Ling, T.C. 2018. Recovery of biotechnological products using aqueous two-phase systems. Journal of Bioscience and Bioengineering, 126(3): 273-281. http://dx.doi.org/10.1016/j.jbiosc.2018.03.005.

Poonsin, T.; Sripokar, P.; Benjakul, S.; Simpson, B.K.; Visessanguan, W.; Klomklao, S. 2017. Major trypsin like-serine proteinases from albacore tuna (Thunnus alalunga) spleen: biochemical characterization and the efect of extraction media. Journal of Food Biochemistry, 41(2): 1-9. http://dx.doi.org/10.1111/jfbc.12323.

Porto, T.S.; Pessôa-Filho, P.A.; Neto, B.B.; Filho, J.L.L.; Converti, A.; Porto, A.L.F.; Pessoa, A. 2007. Removal of proteases from Clostridium perfringens fermented broth by aqueous two-phase systems (PEG/citrate). Journal of Industrial Microbiology & Biotechnology, 34(8): 547-552. http://dx.doi.org/10.1007/s10295-007-0230-8.

Rosso, B.U.; Lima, C.D.A.; Porto, T.S.; Nascimento, C.O.; Pessoa, A.; Converti, A.; Carneiro-da-Cunha, M.D.G.; Porto, A.L.F. 2012. Partitioning and extraction of collagenase from Penicillium aurantiogriseum in poly(ethylene glycol)/phosphate aqueous two-phase system. Fluid Phase Equilibria, 335: 20-25. http://dx.doi.org/10.1016/j.fluid.2012.05.030.

Roy, P.; Bernard, C.; Patrick, D. 1996. Purification, kinetical and molecular characterizations of a serine collagenolytic protease from green shore Crab (Carcinus maenas) digestive gland. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 115(1): 87-95. http://dx.doi.org/10.1016/0305-0491(96)00090-9.

Senphan, T.; Benjakul, S. 2014. Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. Journal of Functional Foods, 6: 147-156. http://dx.doi.org/10.1016/j.jff.2013.10.001.

Silva, J.C.; Silva, Q.G.; Oliveira, V.M.; Porto, A.L.F. 2019. Uso de resíduos orgânicos de anchova (Pomatomus saltatrix) e robalo-flecha (Centropomus undecimalis) para recuperação de proteases alcalinas. In: Aguiar, A.C.;
Silva, K.A.; Giovanettiel-Deir, S. (orgs). Resíduos sólidos: impactos ambientais e inovações tecnológicas. 1ª ed. Recife: EDUFRPE, p. 117-126.

Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1): 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7.

Souchet, N.; Laplante, S. 2011. Recovery and Characterization of a serine collagenolytic extract from Snow Crab (Chionoecetes opilio) by-products. Applied Biochemistry and Biotechnology, 163(6): 765-779. http://dx.doi.org/10.1007/s12010-010-9081-2.

Suarez Garcia, E.; Suarez Ruiz, C.A.; Tilaye, T.; Eppink, M.H.M.; Wijffels, R.H.; Van Den Berg, C. 2018. Fractionation of proteins and carbohydrates from crude microalgae extracts using an ionic liquid based-aqueous two-phase system. Separation and Purification Technology, 204: 56-65. http://dx.doi.org/10.1016/j.seppur.2018.04.043.

Suarez Ruiz, C.A.; Emmery, D.P.; Wijffels, R.H.; Eppink, M.H.; Van Den Berg, C. 2018. Selective and mild fractionation of microalgal proteins and pigments using aqueous two-phase systems. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 93(9): 2774-2783. http://dx.doi.org/10.1002/jctb.5711.

Sripokar, P.; Chaijan, M.; Benjakul, S.; Yoshida, A.; Klomklao, S. 2017. Aqueous two-phase partitioning of liver proteinase from albacore tuna (Thunnus alalunga): application to starry triggerfish (Abalistes stellaris) muscle hydrolysis. International Journal of Food Properties, 20(S2): 1600-1612. http://dx.doi.org/10.1080/10942912.2017.1350705.

Sriket, C.; Benjakul, S.; Visessanguan, W.; Kishimura, H. 2011. Collagenolytic serine protease in freshwater prawn (Macrobrachium rosenbergii): characteristics and its impact on muscle during iced storage. Food Chemistry, 124(1): 29-35. http://dx.doi.org/10.1016/j.foodchem.2010.05.098.

Statsoft Inc. 2008. Statistica, version 8.0. Tulsa: Statsoft. Inc.

Teruel, S.R.L.; Simpson, B.K. 1995. Characterization of the collagenolytic enzyme fraction from winter flounder (Pseudopleuronectes americanus). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 112(1): 131-136. http://dx.doi.org/10.1016/0305-0491(95)00044-9.

Villegas, M.R.; Baeza, A.; Usategui, A.; Ortiz-Romero, P.L.; Pablos, J.L.; Vallet-Regí, M. 2018. Collagenase Nanocapsules: An Approach to Fibrosis Treatment. Acta Biomaterialia, 1(74): 430-438. http://dx.doi.org/10.1016/j.actbio.2018.05.007.

Wu, G.P.; Chen, S.H.; Liu, G.M.; Yoshida, A.; Zhang, L.J.; Su, W.J.; Cao, M.J. 2010. Purification and characterization of a collagenolytic serine proteinase from the skeletal muscle of red sea bream (Pagrus major). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 155(3): 281-287. http://dx.doi.org/10.1016/j.cbpb.2009.11.014.

Zhang, D.; Earp, B.E.; Blazar, P. 2019. Risk factors for skin tearing in collagenase treatment of Dupuytren contractures. The Journal of Hand Surgery, 44(12): 1021-1025. http://dx.doi.org/10.1016/j.jhsa.2019.06.010.

Zhao, J.Z.; Blazar, P.E.; Mora, A.; Rozental, T.D.; Earp, B.E. 2019. Clinical outcomes of collagenase injections during a surgeon’s initial learning phase. Journal of Hand Surgery Global Online, 1(3): 161-165. http://dx.doi.org/10.1016/j.jhsg.2019.04.001.
Published
2021-03-27
How to Cite
SILVA, Jessica Costa et al. EXTRACTION OF COLLAGENOLYTIC ENZYME FROM FISH VISCERA BY PHASE PARTITIONING (PEG/CITRATE) AND ITS POTENTIAL FOR INDUSTRIAL APPLICATION. Boletim do Instituto de Pesca, [S.l.], v. 46, n. 4, mar. 2021. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1552>. Date accessed: 23 may 2022. doi: https://doi.org/10.20950/1678-2305.2020.46.4.593.