EFFECT OF CONJUGATED LINOLEIC ACID FEEDING PERIODS ON FATTY ACID PROFILE AND NUTRITIONAL QUALITY OF <i>Astyanax altiparanae</i>

Abstract

The effects of feeding diets with conjugated linoleic acid (CLA) to Astyanax altiparanae for different periods were investigated on carcasses’ fatty acid profile and nutritional quality. The trial was laid out in a complete randomized design with eight feeding periods (0, 7, 14, 21, 28, 35, 42, and 49 days) and four replicates. A total of 240 fish (3.4 ± 0.3 g) were distributed into four aquariums and fed with the diet containing 32% crude protein, 15 MJ kg-1 gross energy, and 2.5% of CLA. Feeding CLA diet for 49 days resulted in the higher deposition of CLA, CLA isomers, and docosahexaenoic acid (DHA). The isomer c9,t11 was highly deposited than the t10,c12. Polyunsaturated fatty acids (PUFA), n-3, and n-6 increased with feeding period, whereas saturated (SFA), monounsaturated, and medium-chain fatty acids decreased. PUFA/SFA ratio, DHA/EPA, EPA+DHA, and thrombogenicity index increased linearly. Whereas atherogenicity index reduced, hypocholesterolemic/hypercholesterolemic ratio increased in quadratic effects over feeding time. No difference was observed for the n-6/n-3 ratio. Feeding A. altiparanae with 2.5% of CLA for a minimum of 35 days improves the fatty acid profile and provides a commercial product with good nutritional quality and functional benefits.

References

AOAC - Association of Official Analytical Chemists. 2000. Official methods of analysis of the Association of Official Analytical Chemist. Gaithersburg, MD: AOAC.

Azain, M.J. 2003. Conjugated linoleic acid and its effects on animal products and health in single-stomached animals. The Proceedings of the Nutrition Society, 62(2): 319-328. https://doi.org/10.1079/PNS2003240.

Bandarra, N.M.; Nunes, M.L.; Andrade, A.M.; Prates, J.A.; Pereira, S.; Monteiro, M.; Rema, P.; Valente, L.M.P. 2006. Effect of dietary conjugated linoleic acid on muscle, liver and visceral lipid incorporation in rainbow trout juveniles (Oncorhynchus mykiss). Aquaculture, 254(1-4): 496-505. https://doi.org/10.1016/j.aquaculture.2005.10.034.

Barilli, D.J.; Santarosa, M.; Zanqui, A.B.; Boscolo, W.R.; Feiden, A.; Furuya, W.M.; Gomes, S.T.M.; Visentainer, J.V.; Souza, N.E.D.; Matsushita, M. 2014. Incorporation of conjugated linoleic acid (CLA) and α-linolenic acid (LNA) in pacu fillets. Food Science and Technology, 34(1): 74-81. https://doi.org/10.1590/S0101-20612014005000010.

Bligh, E.G.; Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917. https://doi.org/10.1139/o59-099.

Campelo, D.A.; de Oliveira, K.R.; Batiston, W.P.; Zuanon, J.A.; Furuya, W.M.; Matsushita, M.; Salaro, A.L. 2015. Conjugated linoleic acid in diets for lambari (Astyanax altiparanae) (Garutti & Britski, 2000). Aquaculture Nutrition, 21(6): 788-796. https://doi.org/10.1111/anu.12203.

Chen, P.B.; Park, Y. 2019. Conjugated linoleic acid in human health: effects on weight control. In: Watson, R.R. Nutrition in the Prevention and Treatment of Abdominal Obesity, p. 355-382. https://doi.org/10.1016/B978-0-12-816093-0.00025-2.

Dilzer, A.; Park, Y. 2012. Implication of conjugated linoleic acid (CLA) in human health. Critical Reviews in Food Science and Nutrition, 52(6): 488-513. https://doi.org/10.1080/10408398.2010.501409.

Dong, G.F.; Zou, Q.; Wang, H.; Huang, F.; Liu, X.C.; Chen, L.; Yang, C.Y.; Yang, Y.O. 2014. Conjugated linoleic acid differentially modulates growth, tissue lipid incorporation, and gene expression involved in the lipid metabolism of grass carp. Aquaculture, 432: 181-191. https://doi.org/10.1016/j.aquaculture.2014.05.008.

Dos Santos, L.D.; Furuya, W.M.; Da Silva, L.C.; Matsushita, M.; de Castro Silva, T.S. 2011. Dietary conjugated linoleic acid (CLA) for finishing Nile tilapia. Aquaculture Nutrition, 17(2): e70-e81. https://doi.org/10.1111/j.1365-2095.2009.00735.x.

Dutra, F.M.; Machado, W.J.; Caetano, M.S.; Gobbo, D.A. 2012. Avaliação sensorial do processamento em conserva, utilizando-se as espécies: tilápia (Oreochromis niloticus), lambari (Astianax spp) e pacu (Piaractus mesopotamicus). Revista Brasileira de Produtos Agroindustriais, 14(3): 239-244. http://dx.doi.org/10.15871/1517-8595/rbpa.v14n3p239-244.

England Department of Health. 1994. Nutritional aspects of cardiovascular disease. London: Stationary Office. 202p. Reports on Health and Social Subjects No. 46.

European Commission Regulation, 2010. Commission regulation (EU) n° 116/2010, 9 February 2010 amending regulation (EC) no 1924/2006 of the European Parliament and of the council with regard to the list of nutrition claims. Official Journal of the European Union, L, 37: 16-18.

Ferreira, P.M.F.; Nascimento, L.S.; Dias, D.C.; Moreira, D.M.V.; Salaro, A.L.; Freitas, M.B.D.; Carneiro, A.P.S.; Zuanon, J.A.S. 2014. Essential oregano oil as a growth promoter for the yellowtail tetra, Astyanax altiparanae. Journal of the World Aquaculture Society, 45(1): 28-34. https://doi.org/10.1111/jwas.12094.

Fritsche, J.; Steinhart, H. 1998. Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206: 77-82. https://doi.org/10.1007/s002170050218.

Gómez-Candela, C.; Bermejo López, L.M.; Loria-Kohen, V. 2011. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recomendations. Nutrición Hospitalaria, 26(2): 323-329. https://doi.org/10.3305/nh.2011.26.2.5117.

Hartman, L.; Lago, R.C. 1973. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice, 22(6): 475-476.

Henderson, R.J. 1996. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Archives of Animal Nutrition, 49(1): 5-22. https://doi.org/10.1080/17450399609381859.

Justi, K.C.; Hayashi, C.; Visentainer, J.V.; De Souza, N.E.; Matsushita, M. 2003. The influence of feed supply time on the fatty acid profile of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chemistry, 80(4): 489-493. https://doi.org/10.1016/S0308-8146(02)00317-5.

Kennedy, S.R.; Campbell, P.J.; Porter, A.; Tocher, D.R. 2005. Influence of dietary conjugated linoleic acid (CLA) on lipid and fatty acid composition in liver and flesh of Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 141(2): 168-178. https://doi.org/10.1016/j.cbpc.2005.02.010.

Kennedy, S.R.; Leaver, M.J.; Campbell, P.J.; Zheng, X.; Dick, J.R.; Tocher, D.R. 2006. Influence of dietary oil content and conjugated linoleic acid (CLA) on lipid metabolism enzyme activities and gene expression in tissues of Atlantic salmon (Salmo salar L.). Lipids, 41(5): 423-436. https://doi.org/10.1007/s11745-006-5116-4.

Kennedy, S.R.; Bickerdike, R.; Berge, R.K.; Porter, A.R.; Tocher, D.R. 2007. Influence of dietary conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on growth, lipid composition and key enzymes of fatty acid oxidation in liver and muscle of Atlantic cod (Gadus morhua L.). Aquaculture, 264(1-4): 372-382. https://doi.org/10.1016/j.aquaculture.2007.01.013.

Kildea, M.A.; Allan, G.L.; Kearney, R.E. 2004. Accumulation and clearance of the anaesthetics clove oil and AQUI-S™ from the edible tissue of silver perch (Bidyanus bidyanus). Aquaculture, 232(1-4): 265-277. https://doi.org/10.1016/s0044-8486(03)00483-6.

Makol, A.; Torrecillas, S.; Vaquero, A.F.; Rincón, L.; Ginés, R.; Izquierdo, M. 2013. Incorporation of conjugated linoleic acid in market size sea bass (Dicentrarchus labrax) and its effects on performance, composition and fillet sensory and texture attributes. Aquaculture Nutrition, 19(5): 785-797. https://doi.org/10.1111/anu.12025.

Martin, J.C.; Grégoire, S.; Siess, M.H.; Genty, M.; Chardigny, J.M.; Berdeaux, O.; Juaneda, P.; Sébédio, J.L. 2000. Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats. Lipids, 35(1): 91-98. https://doi.org/10.1007/s11745-000-0499-9.

Masters, N.; McGuire, M.A.; Beerman, K.A.; Dasgupta, N.; McGuire, M.K. 2002. Maternal supplementation with CLA decreases milk fat in humans. Lipids, 37(2): 133-138. https://doi.org/10.1007/s11745-002-0872-8.

Mersmann, H.J. 2002. Mechanisms for conjugated linoleic acid-mediated reduction in fat deposition. Journal of Animal Science, 80(E-suppl. 2): E126-E134. https://doi.org/10.2527/animalsci2002.0021881200800ES20017x.

Minghetti, M.; Leaver, M.J.; Tocher, D.R. 2011. Transcriptional control mechanisms of genes of lipid and fatty acid metabolism in the Atlantic salmon (Salmo salar L.) established cell line, SHK-1. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(3): 194-202. https://doi.org/10.1016/j.bbalip.2010.12.008.

Mondragón, M.G.C. 2016. Conjugated linoleic acid (CLA) intake, a mini review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(9): 129-132. https://doi.org/10.9790/2402-100901129132.

Murru, E.; Carta, G.; Cordeddu, L.; Melis, M.; Desogus, E.; Ansar, H.; Chilliard, Y.; Ferlay, A.; Stanton, C.; Coakley, M.; Ross, R.P.; Piredda, G.; Addis, M.; Mele, M.C.; Cannelli, G.; Banni, S.; Manca, C. 2018. Dietary conjugated linoleic acid-enriched cheeses influence the levels of circulating n-3 highly unsaturated fatty acids in humans. International Journal of Molecular Sciences, 19(6): 1730. https://doi.org/10.3390/ijms19061730.

Nagao, K.; Inoue, N.; Wang, Y.M.; Shirouchi, B.; Yanagita, T. 2005. Dietary conjugated linoleic acid alleviates nonalcoholic fatty liver disease in Zucker (fa/fa) rats. The Journal of Nutrition, 135(1): 9-13. https://doi.org/10.1093/jn/135.1.9.

Park, Y.; Pariza, M.W. 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Research International, 40(3): 311-323. https://doi.org/10.1016/j.foodres.2006.11.002.

Park, Y.; Albright, K.J.; Storkson, J.M.; Liu, W.; Cook, M.E.; Pariza, M.W. 1999. Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids, 34(3): 243-248. https://doi.org/10.1007/s11745-999-0359-7.

Pereira, S.L.; Leonard, A.E.; Mukerji, P. 2003. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(2): 97-106. https://doi.org/10.1016/S0952-3278(02)00259-4.

Pontes, M.D.; Campelo, D.A.; Ferraz, R.B.; Zuanon, J.A.; Furuya, W.M.; Salaro, A.L. 2019. Soybean and linseed oil in replacement of fish oil in diets for female lambari Astyanax altiparanae Garutti & Britski, 2000. Latin American Journal of Aquatic Research, 47(2): 260-269. https://doi.org/10.3856/vol47-issue2-fulltext-6.

Porto-Foresti, F.; Castilho-Almeida, R.B.; Foresti, F. 2005. Biologia e criação do lambari-do-rabo-amarelo (Astyanax altiparanae). In: Baldisserotto, B.; Gomes, L.C. (eds.). Espécies nativas para piscicultura no Brasil. Rio Grande do Sul: Editora UFSM Santa Maria. v. 2, p. 101-116.

Ramos, A.; Bandarra, N.M.; Rema, P.; Vaz-Pires, P.; Nunes, M.L.; Andrade, A.M.; Cordeiro, A.R.; Valente, L.M.P. 2008. Time course incorporation of conjugated linoleic acid in market size rainbow trout (Oncorhynchus mykiss) muscle. Aquaculture, 274(2-4): 366-374. https://doi.org/10.1016/j.aquaculture.2007.11.040.

Ramos, R.; Mascarenhas, J.; Duarte, P.; Vicente, C.; Casteleiro, C. 2009. Conjugated linoleic acid-induced toxic hepatitis: first case report. Digestive Diseases and Sciences, 54: 1141-1143. https://doi.org/10.1007/s10620-008-0461-1.

Rodrigues, B.L.; da Cruz Silva, A.C.; da Costa, M.P.; da Silva, F.A.; Mársico, E.T.; Conte-Junior, C.A. 2017. Fatty acid profiles of five farmed Brazilian freshwater fish species from different families. PLoS One, 12(6): e0178898. https://doi.org/10.1371/journal.pone.0178898.

Royan, M.; Navidshad, B. 2015. The metabolic effects of conjugated linoleic acids (CLA) in chickens: A review. Iranian Journal of Applied Animal Science, 5(3): 517-528.

Salaro, A.L.; Campelo, D.A.; Pontes, M.D.; Zuanon, J.A.; Furuya, V.R.; Furuya, W.M. 2015. Avanços na nutrição e produção de lambaris. In: Brito, P.M.A.; Brito, J.R.M. (eds.). Aquicultura no Brasil. São Carlos, Brazil, pp. 491-501.

Santos-Silva, J.; Bessa, R.J.; Santos-Silva, F. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livestock Production Science, 77(2-3): 187-194. https://doi.org/10.1016/S0301-6226(02)00059-3.

Schmid, A.; Collomb, M.; Sieber, R.; Bee, G. 2006. Conjugated linoleic acid in meat and meat products: A review. Meat Science, 73(1): 29-41. https://doi.org/10.1016/j.meatsci.2005.10.010.

Silva, D.J.; Queiroz, A.C. 2002. Análises de alimentos (métodos químicos e biológicos). 3.ed. Viçosa, MG: Editora UFV. 235p.

Siurana, A.; Calsamiglia, S. 2016. A metaanalysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Animal Feed Science and Technology, 217: 13-26. https://doi.org/10.1016/j.anifeedsci.2016.04.013.

Sprecher, H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochemistry Biophysiology Acta (BBA) -. Molecular and Cell Biology of Lipids, 1486(2-3): 219-231. https://doi.org/10.1016/S1388-1981(00)00077-9.

Stachowska, E.; Dolegowska, B.; Dziedziejko, V.; Rybicka, M.; Kaczmarczyk, M.; Bober, J.; Rac, M.; Machalinski, B.; Chlubek, D. 2009. Prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) synthesis is regulated by conjugated linoleic acids (CLA) in human macrophages. Journal of Physiology and Pharmacology, 60: 77-85.

Tan, X.Y.; Luo, Z.; Xie, P.; Li, X.D.; Liu, X.J.; Xi, W.Q. 2010. Effect of dietary conjugated linoleic acid (CLA) on growth performance, body composition and hepatic intermediary metabolism in juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture, 310(1-2): 186-191. https://doi.org/10.1016/j.aquaculture.2010.10.011.

Tan, X.Y.; Luo, Z.; Zhao, Y.H.; Liu, C.X.; Liu, X. 2014. Conjugated linoleic acid affects growth performance, hepatic fatty acid profile and lipid metabolism in juvenile Synechogobius hasta. Aquaculture Nutrition, 20(2): 143-152. https://doi.org/10.1111/anu.12060.

Tocher, D.R.; Sargent, J.R. 1990. Effect of temperature on the incorporation into phospholipid classes and metabolism via desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids in fish cells in culture. Lipids, 25(8): 435-442. https://doi.org/10.1007/BF02538085.

Twibell, R.G.; Watkins, B.A.; Brown, P.B. 2001. Dietary conjugated linoleic acids and lipid source alter fatty acid composition of juvenile yellow perch, Perca flavescens. The Journal of Nutrition, 131(9): 2322-2328. https://doi.org/10.1093/jn/131.9.2322.

Ulbricht, T.L.; Southgate, D.A. 1991. Coronary heart disease: seven dietary factors. Lancet, 338(8773): 985-992. https://doi.org/10.1016/0140-6736(91)91846-M.

Valente, L.M.; Bandarra, N.M.; Figueiredo-Silva, A.C.; Rema, P.; Vaz-Pires, P.; Martins, S.; Prates, J.A.M.; Nunes, M.L. 2007. Conjugated linoleic acid in diets for large-size rainbow trout (Oncorhynchus mykiss): effects on growth, chemical composition and sensory attributes. British Journal of Nutrition, 97(2): 289-297. https://doi.org/10.1017/S000711450733729X.

Whigham, L.D.; Higbee, A.; Bjorling, D.E.; Park, Y.; Pariza, M.W.; Cook, M.E. 2002. Decreased antigen-induced eicosanoid release in conjugated linoleic acid-fed guinea pigs. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282(4): 1104-1112. https://doi.org/10.1152/ajpregu.00075.2001.

Yessoufou, A.; Plé, A.; Moutairou, K.; Hichami, A.; Khan, N.A. 2009. Docosahexaenoic acid reduces suppressive and migratory functions of CD4CD25 regulatory T-cells. Journal of Lipid Research, 50(12): 2377-2388. https://doi.org/10.1194/jlr.M900101-JLR200.

Zou, Q.; Yang, Y.O.; Wei, B.H.; Yu, D.H.; Chen, L.; Zhou, T.; Huang, F.; Dong, G.F. 2018. Effects of dietary conjugated linoleic acid on growth performance, tissue adipocytokine levels and lipid metabolism of grass carp. Aquaculture Nutrition, 24(6): 1752-1768. https://doi.org/10.1111/anu.12815.

Zuo, R.; Ai, Q.; Mai, K.; Xu, W. 2013. Effects of conjugated linoleic acid on growth, non-specific immunity, antioxidant capacity, lipid incorporation and related gene expression in juvenile large yellow croaker (Larmichthys crocea) fed soybean oil-based diets. British Journal of Nutrition, 110(7): 1220-1232. https://doi.org/10.1017/S0007114513000378.
Published
2021-06-18
How to Cite
OLIVEIRA, Katia Rodrigues Batista de et al. EFFECT OF CONJUGATED LINOLEIC ACID FEEDING PERIODS ON FATTY ACID PROFILE AND NUTRITIONAL QUALITY OF Astyanax altiparanae. Boletim do Instituto de Pesca, [S.l.], v. 47, june 2021. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1593>. Date accessed: 02 dec. 2021. doi: https://doi.org/10.20950/1678-2305/bip.2021.47.e618.
Section
Scientific Article