ADDITION OF <i>Aurantiochytrium</i> sp. MEAL IN THE DIET AFFECTS IMMUNITY AND THERMAL SHOCK RESISTANCE OF THE PACIFIC WHITE SHRIMP

Abstract

This paper reports the evaluation of digestibility, immunological parameters, and resistance to thermal shock at low temperature in Litopenaeus vannamei fed diets with diferent Aurantiochytrium sp. meal additions (0; 0.5; 1 and 2%). First, the apparent digestibility coefficient of the ingredient was determined. The digestibility of the microalgae meal was high for protein (74.90%); around 60% for lipids, and for docosahexaenoic fatty acid (DHA) it was 55.61%. After, shrimp rearing with the feed additive was carried out in a clear water system, containing 25 shrimp (initial weight: 4.89 ± 0.27 g) per 400 L tank. Feeding occurred four times a day. After a three-week period, immunological parameters were evaluated and thermal shock was performed. Animals fed 0.5% and 2% of the microalgae Aurantiochytrium sp. showed higher survival to thermal shock. In immunological analyses, the serum agglutiniting titer was higher (p <0.05) in the 0.5 and 2% additions of the microalgae meal, and the phenoloxidase activity (PO) was higher in the 1% addition (p <0.05). It is concluded that there is good utilization of the nutrients of Aurantiochytrium sp. meal by L. vannamei and its addition to the diet (0.5 and 1%) increased shrimp resistance to thermal shock.

References

Alabi, A.O.; Jones, D.A.; Latchford, J.W. 1999. The efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture, 178(1-2): 1-11. https://doi.org/10.1016/s0044-8486(99)00131-3.

AOAC – Association of Official Analytical Chemists. 1999. Official Methods of Analysis. 16th ed. Arlington: AOAC. 771p.

Barracco, M.A.; Perazzolo, L.M.; Rosa, R.D. 2014. Avances en la inmunología del camarón. In: Morales, V.; Cuellar-Angel, J. Guía técnica: patología e inmunología de camarones penaeidos. 2nd ed. Panamá: CYTED. p. 237-308.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Chi, Z.; Liu, Y.; Frear, C.; Chen, S. 2009. Study of a two-stage growth of DHAproducing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Applied Microbiology and Biotechnology,
81(1): 1141-1148. https://doi.org/10.1007/s00253-008-1740-7.

Corrêa, C.F.; Nobrega, R.O.; Mattioni, B.; Fracalossi, D.M. 2018. Mixes of plant oils as fish oil substitutes for Nile tilapia at optimal and cold suboptimal temperature. Aquaculture, 497: 82-90. https://doi.org/10.1016/j.aquaculture.2018.07.034.

FAO – Food and Agricultural Organization of the United Nations. 2016. The state of world fisheries and aquaculture. Roma: SOFIA. 190p.

Folch, J.; Lees, M.; Sloane-Stanley, C.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226: 477-509.

Gong, H.; Lawrence, A.L.; Jiang, D.H.; Castille, F.L.; Gatlin, D.M. 2000. Lipid nutrition of juvenile Litopenaeus vannamei: I. Dietary cholesterol and de-oiled soy lecithin requirements and their interaction. Aquaculture, 190(3-4): 305-324. https://doi.org/10.1016/S0044-8486(00)00414-2.

Guimarães, A.M.; Schleder, D.D.; Nagata, M.; Nóbrega, R.O.; Fracalossi, D.M.; Seiffert, W.Q.; Vieira, F.N. 2019. Aurantiochytrium sp. meal can replace fish oil in practical diets for the juvenile Pacific white shrimp. Aquaculture Nutrition, 25(4): 798-807. https://doi.org/10.1111/anu.12897.

Harwood, J.L.; Guschina, I.A. 2009. The versatility of algae and their lipid metabolism. Biochimie, 91(6): 679-684. https://doi.org/10.1016/j.biochi.2008.11.004.

Hayward, S.A.L.; Manso, B.; Cossins, A.R. 2014. Molecular basis of chill resistance adaptations in poikilothermic animals. The Journal of Experimental Biology, 217(3): 6-15. https://doi.org/10.1242/jeb.096537.

Huang, X.; Zhou, H.; Zhang, H. 2006. The efect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and imune activy of the shrimp, Fenneropeaneus chinensis. Fish & Shellfish Immunology, 20(5): 750-757. https://doi.org/10.1016/j.fsi.2005.09.008.

Ju, Z.Y.; Deng, D.F.; Dominy, W. 2012. A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture, 354-355: 50-55. https://doi.org/10.1016/j.aquaculture.2012.04.028.

Kautsky, N.; Rönnbäck, P.; Tedengren, M.; Troell, M. 2000. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191(1-3): 145-161. https://doi.org/10.1016/S0044-8486(00)00424-5.

Kitikiew, S.; Yu-Yuan, C.; Su-Tuen, Y.; Jiann-Chu, C. 2017. White Shrimp Litopenaeus vannamei that have received fucoidan show protective immunity after ammonia stressing. Taiwan Shuichanxue Hui Kan, 42(30): 189-197.

Li, Q.; Ai, Q.; Mai, K.; Xu, W.; Zheng, Y. 2013. A comparative study: In vitro effects of EPA and DHA on imune functions of head-kidney macrophages isolated from large yellow croaker (Larmichthys crocea). Fish & Shellfish Immunology, 35(3): 933-940. https://doi.org/10.1016/j.fsi.2013.07.004.

Lightner, D.V. 2011. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. Journal of Invertebrate Pathology, 106(1): 110-130. https://doi.org/10.1016/j.jip.2010.09.012.

Macias-Sancho, J.; Henrique Poersch, L.H.; Bauer, W.; Luis Alberto Romano, L.A.; Wasielesky, W.; Tesser, M.B. 2014. Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture, 426-427: 120-125. https://doi.org/10.1016/j.aquaculture.2014.01.028.

Moser, J.; Álvarez, D.A.G.; Cano, F.M.; Garcia, T.E.; Molina, D.E.C.; Clark, G.P.; Marques, M.R.F.; Barajas, F.J.M.; López, J.H. 2012. Water temperature influences viral load and detection of White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei and wild crustaceans. Aquaculture, 326-329: 9-14. https://doi.org/10.1016/j.aquaculture.2011.10.033.

Neto, J.F.S.; Torres, V.M.; Lima, P.W.C.; Farias, W.R.L. 2008. Trial culture of marine shrimp Litopenaeus vannamei postlarvae under three feeding strategies. Ciência Agronômica, 39(3): 410-415.

Niu, J.; Chen, X.; Lu, X.; Jiang, S.; Lin, H.; Liu, Y.; Huang, Z.; Wang, J.; Wang Y., Tian, L. 2015. Effects of different levels of dietary wakame (Undaria pinnatifida) on growth, immunity and intestinal structure of juvenile Penaeus monodon. Aquaculture, 435: 78-85. https://doi.org/10.1016/j.aquaculture.2014.08.013.

Nonwachai, T.; Purivirojkul, W.; Limsuwan, C.; Chuchird, N.; Velasco, M.; Dhar, A.K. 2010. Growth, nonspecific immune characteristics, and survival upon challenge with Vibrio harveyi in Pacific white shrimp (Litopenaeus vannamei) raised on diets containing algal meal. Fish & Shellfish Immunology, 29(2): 298-304. https://doi.org/10.1016/j.fsi.2010.04.009.

NRC – National Research Council. 2011. Nutrient requirements of fish and shrimp. Washington: National Academic Press. 376p.

Pruitt, N.L. 1990. Adaptations to temperature in the cellular membranes of crustacea: membrane structure and metabolism. Journal of Thermal Biology, 15(1): 1-8. https://doi.org/10.1016/0306-4565(90)90040-O.

Sakai, M. 1999. Current research status of fish immunostimulants. Aquaculture, 172(1-2): 63-92. https://doi.org/10.1016/S0044-8486(98)00436-0.

Schleder, D.D.; Blank, M.; Peruch, L.G.B.; Vieira, F.N.; Andreatta, E.R.; Hayashi, L. 2017. Thermal resistance of Pacific white shrimp fed Sargassum filipendula: A MALDI-TOF mass spectrometry approach. Aquaculture, 481: 103-111. https://doi.org/10.1016/j.aquaculture.2017.08.028.

Schumann, J. 2016. It is all about fluidity: fatty acids and macrophage phagocytosis. European Journal of Pharmacology, 785: 18-23. https://doi.org/10.1016/j.ejphar.2015.04.057.

Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Chowdhury, M.K.; Parsaeimehr, A.; Liang, Y.; Daroch, M. 2018. Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1): 197-213. https://doi.org/10.1007/s10811-017-1234-z.

Silva, J.W.A.; Santos, M.J.B.; Bezerra, J.H.C.; Damasceno, V.L.; Araujo, G.S.; Santos, E.S.; Moreira, R.T.; Lopes, D.N.M. 2020. Influência da microalga Chlorella vulgaris no desempenho zootécnico do camarão marinho Litopenaeus vannamei. Brazilian Journal of Development, 6(2): 5603-5614. https://doi.org/10.34117/bjdv6n2-019.

Söderhäll, K.; Häll, L. 1984. Lipopolysaccharide-induced activation of prophenoloxidade activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta, 797(1): 99-104. https://doi.org/10.1016/0304-4165(84)90387-8.

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin. Ottawa: Office des recherches sur les pêcheries du Canada. 310p.

Teets, N.M.; Denlinger, D.L. 2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiological Entomology, 38(2): 105-116. https://doi.org/10.1111/phen.12019.

Teunissen, O.S.P.; Faber, R.; Booms, G.H.R.; Latscha, T.; Boon, J.H. 1998. Influence of vaccination on vibriosis resistance of the giant black tiger shrimp Penaeus monodon (Fabricius). Aquaculture, 164(1-4): 359-366. https://doi.org/10.1016/S0044-8486(98)00200-2.

Thanigaivel, S.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. 2016. Seaweeds as an alternative therapeutic source for aquatic disease management. Aquaculture, 464: 529-536. https://doi.org/10.1016/j.aquaculture.2016.08.001.

Tomanek, L. 2008. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat shock response. Physiological and Biochemical Zoology, 81(6): 709-717. https://doi.org/10.1086/590163.

Van Wyk, P.; Scarpa, J. 1999. Water Quality and Management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming marine shrimp in recirculating freshwater systems. Tallahassee: Florida Department of Agriculture & Consumer Services. pp. 141-162.

Wang, Y.; Li, M.; Filer, Y.; Xue, Q.; Mai, K. 2017. Replacement of fish oil with a DHA-rich Schizochytrium meal on growth performance, activities of digestive enzyme and fatty acid profile of Pacific white shrimp (Litopenaeus vannamei) larvae. Aquaculture Nutrition, 23(5):1113-1120. https://doi.org/10.1111/anu.12479.

Willmer, P.; Stone, G.; Johnston, I. 2005. Environmental physiology of animals. 2nd ed. Malden: Blackwell Science, 754p.

Xia, S.; Zhao, P.; Chen, K.; Li, Y.; Liu, S.; Zhang, L.; Yang, H. 2012. Feeding preferences of the sea cucumber Apostichopus japonicas (Selenka) on various seaweed diets. Aquaculture, 344-349(1): 205-209. https://doi.org/10.1016/j.aquaculture.2012.03.022.

Yangthong, M.; Hutadilok-Towatana, N.; Thawonsuwan, J.; Wutiporn, P. 2016. An aqueous extract from Sargassum sp. enhances the immune response and resistance against Streptococcus iniae in the Asian sea bass (Lates calcarifer Bloch). Journal of Applied Phycology, 28(6): 3587-3598. https://doi.org/10.1007/s10811-016-0859-7.

Yenari, M.A.; Giffard, R.G.; Sapolsky, R.M.; Steinberg, G.K. 1999. The neuroprotective potential of heat shock protein 70 (HSP70). Trends in Molecular Medicine, 5(12): 525-531. https://doi.org/10.1016/s1357-4310(99)01599-3.

Zhou, Q.; Zeng, W.; Wang, T.; Wang, Y.; Xie, F. 2012. Dietary arginine requirement of juvenile Pacifc white shrimp, Litopenaeus vannamei. Aquaculture, 364-365: 252-255. https://doi.org/10.1016/j.aquaculture.2012.08.020.
Published
2021-09-13
How to Cite
ROCHA, Jamilly Sousa et al. ADDITION OF Aurantiochytrium sp. MEAL IN THE DIET AFFECTS IMMUNITY AND THERMAL SHOCK RESISTANCE OF THE PACIFIC WHITE SHRIMP. Boletim do Instituto de Pesca, [S.l.], v. 47, sep. 2021. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1613>. Date accessed: 05 dec. 2021. doi: https://doi.org/10.20950/1678-2305/bip.2021.47.e631.
Section
Scientific Article