BILLINGS RESERVOIR (BRAZIL): CHEMICAL STUDIES ON WATER AND CHEMICAL AND MORPHOLOGICAL STUDIES ON ZEBRAFISH GILLS

Abstract

Previous study of this research group revealed that water from the Billings reservoir (Brazil) intended for human use (water supply and seafood) has microbiological contamination and causes lethality and brain and behavioral impairments in zebrafish. The objective of this study was to understand what have induced these impairments in the animal model. Chemical analyses on water samples from Rio Pequeno (RP), Rio Grande (RG), and Bororé (BO) rivers, as well as chemical and morphological analyses on zebrafish gills exposed to those waters were performed. Waters samples from RP, RG, and BO presented high levels of phosphorus. BO water and fish gills exposed to this water presented high levels of nitrogen. RG water caused potassium contamination in gills. Phosphorus, nitrogen, and potassium are indicators of anthropogenic pollution. RG water and fish gills exposed to this water presented low levels of calcium, which might be an indication of chemical imbalance that could lead to health problems in aquatic animals. RG and BO waters resulted in zirconium contamination in gills. BO water induced respiratory lamellae thickening in the gills, which may be the underlying mechanism for the observed hypoxia. In conclusion, behavioral, brain, and respiratory defects observed previously were induced by chemical and morphologicalb disturbances due to anthropogenic pollution in the Billings reservoir.

References

Abollino, O.; Aceto, M.; Malandrino, M.; Mentasti, E.; Sarzanini, C.; Barberis, R. 2002. Distribution and mobility of metals in contaminated sites. chemometric investigation of pollutant profiles. Environmental Pollution, 119(2): 177-193 https://doi.org/10.1016/s0269-7491(01)00333-5.

Aptel, I.; Cance-Rouzaud, A.; Grandjean, H. 1999. Association Between Calcium Ingested from Drinking Water and Femoral Bone Density in Elderly Women: Evidence from the EPIDOS Cohort. Journal of Bone and Mineral Research, 14(5): 829-833 https://doi.org/10.1359/jbmr.1999.14.5.829.

Bacciottini, L.; Tanini, A.; Falchetti, A.; Masi, L.; Franceschelli, F.; Pampaloni, B.; Giorgi, G.; Brandi, M.L. 2004. Calcium bioavailability from a calcium-rich mineral water, with some observations on method. Journal of Clinical Gastroenterology, 38(9): 761-766 https://doi.org/10.1097/01.mcg.0000139031.46192.7e.

Bailey, J.; Oliveri, A.; Levin, E.D. 2013. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Research (Part C), 99(1): 14-23 https://doi.org/10.1002/bdrc.21027.

Brasil, 2005. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução Conama N° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília, 18 de março de 2005, nº 53, p. 58-63.

Brasil, 2011. Ministério da Saúde. Secretaria de Vigilância em Saúde. Portaria nº 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União, Brasília, 14 de dezembro de 2011, p.34.

Brasil. 2015. SP: com dez vezes mais água que Cantareira, Billings pode ser alternativa. Available at: < https://agenciabrasil.ebc.com.br/geral/noticia/2015-01/com-dez-vezes-mais-agua-que-o-cantareira-billings-pode-ser-alternativa > Accessed: Oct. 17, 2017.

Climatempo. 2015. Nível dos Mananciais 2015. Available at: Accessed: Jun. 17, 2015.

Costi, D.; Calcaterra, P.G.; Iori, N.; Vourna, S.; Nappi, G.; Passeri, M. 2014. Importance of bioavailable calcium drinking water for the maintenance of bone mass in post-menopausal women. Journal of Endocrinological Investigation, 22(11): 852-856 https://doi.org/10.1007/BF03343658.

Dalboni, L.C.; Coelho, C.P.; Palombo Pedro, R.R.; Correia, M.S.; de Santana, F.R.; Cardoso, T.N.; Pinto, S.A.G.; Alvares-Saraiva, A.M.; Dutra-Correa, M.; Peres, G.B.; Holandino, C.; Rossi, A.; Cesar, A.T.; Waisse, S.; Bonamin, L.V. 2019. Biological actions, electrical conductance and silicon-containing microparticles of arsenicum album prepared in plastic and glass vials. Homeopathy, 108(1): 12-23. https://doi.org/10.1055/s-0038-1670675.

Dobrovolski, R.; Rattis, L. 2015. Water collapse in Brazil: the danger of relying on what you neglect. Natureza & Conservação. Brazilian Journal of Nature Conservation, 13(1): 80-83. http://dx.doi.org/10.1016/j.ncon.2015.03.006.

Dou, X.; Zhang, Y.; Wang, H.; Wang, T.; Wang, Y. 2011. Performance of granular zirconium–iron oxide in the removal of fluoride from drinking water. Water Research, 45(12): 3571-3578. https://doi.org/10.1016/j.watres.2011.04.002.

Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M.A.H. 2005. Standard Methods for the Examination of Water and Wastewater: Centennial Edition. 21st ed. Washington, D.C.: American Public Health Association.

EPA, 2018. Drinking Water Standards and Health Advisories Table. In: United States Environmental Protection Agency - USEPA (ed.). Office of Water U.S. Environmental Protection Agency, Washington, DC, 18p.

Esteves, F.A. 2011. Fundamentos de Limnologia. 3rd ed. Rio de Janeiro: Editora ‏Interciência, 826p.

Gao, Y.; Yu, G.; Luo, C.; Zhou, P. 2012. Groundwater nitrogen pollution and assessment of its health risks: a case study of a typical village in rural-urban continuum, China. PLoS One, 7(4): e33982. https://doi.org/10.1371/journal.pone.0033982.

Gemelgo, M.C.; Mucci, J.L.; Navas-Pereira, D. 2009. Population dynamics: seasonal variation of phytoplankton functional groups in brazilian reservoirs (Billings and Guarapiranga, São Paulo). Brazilian Journal of Biology, 69(4): 1001-1013. https://doi.org/10.1590/S1519-69842009000500004.

Ghosh, S.; Sharma, A.; Talukder, G. 1992. Zirconium. An abnormal trace element in biology. Biological Trace Element Research, 35(3): 247-271. https://doi.org/10.1007/BF02783770.

Heaney, R.P. 2006. Absorbability and utility of calcium in mineral waters. The American Journal of Clinical Nutrition, 84(2): 371-374. https://doi.org/10.1093/ajcn/84.2.371.

Hill, A.J.; Teraoka, H.; Heideman, W.; Peterson, R.E. 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences, 86(1): 6-19. https://doi.org/10.1093/toxsci/kfi110.

Hortellani, M.A.; Sarkis, J.E.; Menezes, L.C.B.; Bazante-Yamaguishi, R.; Pereira, A.S.A.; Garcia, P.F.G.; Maruyama, L.S.; Castro, P.M.G. 2013. Assessment of metal concentration in the billings reservoir sediments, São Paulo State, Southeastern Brazil. Journal of the Brazilian Chemical Society, 24(1): 58-67. https://doi.org/10.1590/S0103-50532013000100009.

Huang, X.; Chen, H.; Xia, F.; Wang, Z.; Mei, K.; Shang, X.; Liu, Y.; Dahlgren, R.; Zhang, M.; Huang, H. 2018. Assessment of Long-Term Watershed Management on Reservoir Phosphorus Concentrations and Export Fluxes. International Journal of Environmental Research and Public Health, 15(10): 2169. https://doi.org/10.3390/ijerph15102169.

Ismail, N.A.H.; Wee, S.Y.; Aris, A.Z. 2017. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere, 188: 375-388. https://doi.org/10.1016/j.chemosphere.2017.08.150.

Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; Gaikwad, S.; Robinson, K.; Baatrup, E.; Tierney, K.; Shamchuk, A.; Norton, W.; Miller, N.; Nicolson, T.; Braubach, O.; Gilman, C.P.; Pittman, J.; Rosemberg, D.B.; Gerlai, R.; Echevarria, D.; Lamb, E.; Neuhauss, S.C.; Weng, W.; Bally-Cuif, L.; Schneider, H. 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10(1): 70-86. https://doi.org/10.1089/zeb.2012.0861.

Kalueff, A.V.; Stewart, A.M.; Gerlai, R. 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 35(2): 63-75 https://doi.org/10.1016/j.tips.2013.12.002.

Karthiga, P.; Ponnanikajamideen, M.; Rajendran, R.S.; Annadurai, G.; Rajeshkumar, S. 2019. Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio. Drug and Chemical Toxicology, 42(1): 104-111. https://doi.org/10.1080/01480545.2018.1523186.

Leme, E.; Silva, E.P.; Rodrigues, P.S.; Silva, I.R.; Martins, M.F.M.; Bondan, E.F.; Bernardi, M.M.; Kirsten, T.B. 2018. Billings reservoir water used for human consumption presents microbiological contaminants and induces both behavior impairments and astrogliosis in zebrafish. Ecotoxicology and Environmental Safety, 161: 364-373. https://doi.org/10.1016/j.ecoenv.2018.06.009.

Liu, Y.; Zhu, Y.; Qiao, X.; Zheng, B.; Chang, S.; Fu, Q. 2018. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir. Royal Society Open Science, 5(1): 170624. https://doi.org/10.1098/rsos.170624.

Martinez-Sales, M.; Garcia-Ximenez, F.; Espinos, F.J. 2015. Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters. Journal of Environmental Sciences, 33(1): 254-260. https://doi.org/10.1016/j.jes.2014.11.012.

Matey, V.; Richards, J.G.; Wang, Y.; Wood, C.M.; Rogers, J.; Davies, R.; Murray, B.W.; Chen, X.Q.; Du, J.; Brauner, C.J. 2008. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. Journal of Experimental Biology, 211(7): 1063-1074. https://doi.org/10.1242/jeb.010181.

Nestler, A.; Berglund, M.; Accoe, F.; Duta, S.; Xue, D.; Boeckx, P.; Taylor, P. 2011. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research International, 18(4): 519-533. http://dx.doi.org/10.1007/s11356-010-0422-z.

Niagolova, N.; McElmurry, S.P.; Voice, T.C.; Long, D.T.; Petropoulos, E.A.; Havezov, I.; Chou, K.; Ganev, V. 2005. Nitrogen species in drinking water indicate potential exposure pathway for Balkan Endemic Nephropathy. Environmental Pollution, 134(2): 229-237. https://doi.org/10.1016/j.envpol.2004.08.003.

Person Le Ruyet, J.; Boeuf, G.; Zambonino Infante, J.; Helgason, S.; Le Roux, A. 1998. Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 119(2): 511-518. https://doi.org/10.1016/S1095-6433(97)00458-3.

Quattrini, S.; Pampaloni B.; Brandi, M.L. 2016. Natural mineral waters: chemical characteristics and health effects. Clinical Cases in Mineral and Bone Metabolism, 13(3): 173-180.

Rodrigues, G.Z.P.; Machado, A.B.; Gehlen, G. 2019. Influência de metais no comportamento reprodutivo de peixes, revisão bibliográfica. Revista Geama, 5(1): 4-13.

Rodrigues, L.L.; Sant’anna, C.L.; Tucci, A. 2010. Chlorophyceae das Represas Billings (Braço Taquacetuba) e Guarapiranga, SP, Brasil. Brazilian Journal of Botany, 33(2): 247-264. https://doi.org/10.1590/S0100-84042010000200006.

Roux, S.; Baudoin, C.; Boute, D.; Brazier, M.; De La Gueronniere, V.; De Vernejoul, M.C. 2004. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers. The Journal of Nutrition, Health and Aging, 8(5): 380-384.

SABESP. 2015a. Crise hídrica, estratégia e soluções da SABESP. 95p. Available at: . Accessed: Jul. 09, 2015.

SABESP. 2015b. Os 85 anos da Represa Billings. Disponível em: Accessed: Jul. 08, 2015.

SABESP. 2016. Controle de perdas. Available at: Accessed: Nov. 21, 2017.

Shahid, M.; Ferrand, E.; Schreck, E.; Dumat, C. 2013. Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. In: Whitacre D. (ed.). Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, v. 221, pp.107-127. https://doi.org/10.1007/978-1-4614-4448-0_2.

Sisinno, C.L.S.; Oliveira-Filho, E.C. 2013. Princípios de toxicologia ambiental. 1st ed., Rio de Janeiro: Editora Interciência, 216p.

Sousa, V.A.S.; Silva, D.R.M. 2014. Abastecimento público de água da região metropolitana de São Paulo. Revista Interação, X(2): 10-28.

Twitchen, I.D.; Eddy, F.B., 1994. Sublethal effects of ammonia on freshwater fish. In: Müller, R., Lloyd, R. (eds.). Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Blackwell Scientific Publications, Fishing New Books, Londres, UK, pp. 135-147.

van Dam, R.A.; Hogan, A.C.; McCullough, C.D.; Houston, M.A.; Humphrey, C.L.; Harford, A.J. 2010. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environmental Toxicology and Chemistry, 29(2): 410-421 https://doi.org/10.1002/etc.56.

Wayland, K.G.; Long, D.T.; Hyndman, D.W.; Pijanowski, B.C.; Woodhams, S.M.; Haack, S.K. 2003. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-mode factor analysis. Journal of Environmental Quality, 32(1): 180-190. https://doi.org/10.2134/jeq2003.1800.

Wengrat, S.; Bicudo, D.C. 2011. Spatial evaluation of water quality in an urban reservoir (Billings Complex, southeastern Brazil). Acta Limnologica Brasiliensia, 23(2): 200-216. https://doi.org/10.1590/S2179-975X2011000200010.

Yang, C.-Y.; Chiu, H.-F.; Chang, C.-C.; Wu, T.-N.; Sung, F.-C. 2002. Association of Very Low Birth Weight with Calcium Levels in Drinking Water. Environmental Research, 89(3): 189-194. https://doi.org/10.1006/enrs.2002.4369.

Yang, C.Y.; Cheng, M.F.; Tsai, S.S.; Hsieh, Y.L. 1998. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Japanese Journal of Cancer Research, 89(2): 124-130. https://doi.org/10.1111/j.1349-7006.1998.tb00539.x.

Yang, C.Y.; Chiu, H.F.; Cheng, M.F.; Hsu, T.Y.; Wu, T.N. 2000. Calcium and magnesium in drinking water and the risk of death from breast cancer. Journal of Toxicology and Environmental Health Part A, 60(4): 231-241.

Zheng, M.; Sheng, Y.; Sun, R.; Tian, C.; Zhang, H.; Ning, J.; Sun, Q.; Li, Z.; Bottrell, S.H.; Mortimer, R.J.G. 2017. Identification and Quantification of Nitrogen in a Reservoir, Jiaodong Peninsula, China. Water Environment Research, 89(4): 369-377.
Published
2021-12-29
How to Cite
LEME, Ednilse et al. BILLINGS RESERVOIR (BRAZIL): CHEMICAL STUDIES ON WATER AND CHEMICAL AND MORPHOLOGICAL STUDIES ON ZEBRAFISH GILLS. Boletim do Instituto de Pesca, [S.l.], v. 47, dec. 2021. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1631>. Date accessed: 23 may 2022. doi: https://doi.org/10.20950/1678-2305/bip.2021.47.e649.
Section
Scientific Article