PROTEIN REQUIREMENT FOR INITIAL REARING PHASE OF PACIFIC WHITE SHRIMP IN A BIOFLOC SYSTEM

Abstract

This study evaluated the protein requirement of Litopenaeus vannamei post-larvae during the initial rearing phase in a biofloc system. Five different diets were evaluated with increasing concentrations of crude protein: 31.28, 36.29, 41.57, 46.34, and 51.74 g 100 g-1 CP. Post-larvae (0.16 ± 0.01 g) were stocked at a density of 450 PL m-3 in 400 L tanks. Water quality parameters were maintained within the limits recommended for shrimp farming. After 38 days, a regression analysis revealed that levels of CP content (65.29 – 72.83%), EE (10.45 – 11.65%) and body N (10.45 – 11.64%) increased with increasing protein levels in the diet. A similar trend was observed in the biofloc sludge with respect to CP and N. Survival exceeded 80%, and the shrimp with diets containing 31.28 to 46.34g 100 g-1 CP presented an increase in final weight (1.52 – 2.61 g), productivity (0.69 – 1.10 Kg m-3), weight gain (1.38 – 2.44 g), and feeding efficiency (77.28 – 101.68%), whereas these indices decreased to51.74 g 100 g-1 CP. Crude protein content from 44.26 to 47.12 g 100 g-1 provided the best growth performance during the initial rearing phase of Pacific white shrimp in a biofloc system.

References

AOAC – Association of Official Analytical Chemists, 1999. Official Methods of analysis. 16th ed. Washington: AOAC. 1141p.

APHA – American Public Health Association, 2005. Standard methods for the examination of water and wastewater. Washington: American Public Health Association, American Water Works Association, Water Pollution Control Association. 1504p.

Burford, M.A.; Thompson, J.P.; Mcintosh, P.R.; Anuman, H.R.; Pearson, C.D. 2003. Nutrient and microbial dynamics in high intensity, zero exchange shrimp pond in Belize. Aquaculture, 219(1-4): 393-411. https://doi.org/10.1016/S0044-8486(02)00575-6.

Chamorro-Legarda, E.; Mendes, L.G.; Oliveira, G.G.; Vieira, N. 2016. Açúcar refinado como fonte de carbono no berçário de camarões cultivados em sistema de bioflocos. Boletim do Instituto de Pesca, 42(2): 443-448. https://doi.org/10.20950/1678-2305.2016v42n2p443.

Correia, E.S.; Wilkenfeld, J.S.; Morris, T.C.; Wei, L.; Prangnell, D.I.; Samocha, T.M. 2014. Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59: 48-54. https://doi.org/10.1016/j.aquaeng.2014.02.002.

Crab, R.; Chielens, B.; Wille, M.; Bossier, P.; Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of biofloc, a feed for Macrobrachium rosenbergii post-larvae. Aquaculture Research, 41(4): 559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x.

Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019.

Emerenciano, M.; Gaxiola, G.; Cuzon, G. 2013. Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic, M.D. (ed.). Biomass now: cultivation and utilization. Belfast: In Tech, Queen’s University. p. 301-328.

FAO – Food and Agriculture Organization of the United Nations, 2020. El estado mundial de la pesca y la acuicultura 2020: la sostenibilidad en acción. Roma. 243p. https://doi.org/10.4060/ca9229es.

Gatlin III, D.M. 2010. Principles of fish nutrition. Stoneville: Southern Regional Aquaculture Center. n.5003, p. 1-8. (SRAC Publication). Available at: Accessed: Apr. 01, 2020.

Hargreaves, J.A. 2013. Biofloc production systems for aquaculture. Stoneville: Southern Regional Aquaculture Center. n. 4503, p. 1-12. (SRAC Publication . Available at: Accessed: Jun. 30, 2020.

Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W.; Verdegem, M.C.J. 2006. The effect of carbohydrate addiction on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture, 252(2-4): 248-263. https://doi.org/10.1016/j.aquaculture.2005.06.044.

Jatobá, A.; Silva, B.C.; Silva, J.S.; Nascimento, V.F.; Mouriño, J.L.P.; Seiffert, W.Q.; Toledo, T.M. 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture, 432: 365-371. https://doi.org/10.1016/j.aquaculture.2014.05.005.

Kanazawa, A. 1989. Protein requirements of Penaeid shrimp. In: Advances in Tropical Aquaculture, 9, Tahiti. Actes... France: Archive Institutionnelle de l’Ifremer. p. 261-270. Available at: Accessed: Jul. 15, 2021.

Khanjani, M.H.; Sajjadi, M.M.; Alizadeh, M.; Sourinejad, I. 2016. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4): 1491-1501. https://doi.org/10.1111/are.12985.

Krummenauer, D.; Abreu, P.C.; Poersch, L.; Reis, P.A.C.P.; Suita, S.M.; Reis, W.G.; Wasielesky Junior, W. 2020. The relationship between shrimp (Litopenaeus vannamei) size and biofloc consumption determined by the stable isotope technique. Aquaculture, 529: 735635. https://doi.org/10.1016/j.aquaculture.2020.735635.

Legarda, E.C.; Barcelos, S.S.; Redig, J.C.; Ramedig, N.C.B.; Guimaraes, A.M.; Santo, C.M.E.; Seiffert, W.Q.; Vieira, F.N. 2018. Effects of stocking density and artificial substrates on yield and water quality in a biofloc shrimp nursery culture. Revista Brasileira de Zootecnia, 47: 1-7. https://doi.org/10.1590/rbz4720170060.

Lin, Y.C.; Chen, J.C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1): 109-119. https://doi.org/10.1016/S0022-0981(01)00227-1.

Lin, Y.C.; Chen, J.C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4): 193-201. https://doi.org/10.1016/S0044-8486(03)00220-5.

Maicá, P.F.; Borba, M.R.; Wasielesky, W. 2012. Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water exchange superintensive system. Aquaculture Research, 43(3): 361-370. https://doi.org/10.1111/j.1365-2109.2011.02838.x.

Mcintosh, D.; Samocha, T.M.; Jones, E.R.; Lawrence, A.L.; Horowitz, S.; Horowitz, A. 2001. Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of Litopenaeus vannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering, 25(2): 69-82. https://doi.org/10.1016/S0144-8609(01)00073-5.

Melo, F.P.; Ferreira, M.G.P.; Lima, J.P.V.; Correia, E.S. 2015. Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Revista Caatinga, 28(4): 202-210. https://doi.org/10.1590/1983-21252015v28n422rc.

Millamena, O.M.; Bautista-Teruel, M.N.; Reyes, O.S.; Kanazawa, A. 1998. Requirements of juvenile marine shrimp, Penaeus monodon (Fabricius) for lysine and arginine. Aquaculture, 164(1-4): 95-104. https://doi.org/10.1016/S0044-8486(98)00179-3.

Millamena, O.M.; Teruel, M.B.; Kanazawa, A. 1996a. Methionine requirement of juvenile Tiger shrimp Penaeus monodon Fabricius. Aquaculture, 143(3-4): 403-410. https://doi.org/10.1016/0044-8486(96)01270-7.

Millamena, O.M.; Teruel, M.B.; Kanazawa, A. 1996b. Valine requirement of postlarval tiger shrimp, Penaeus monodon Fabricius. Aquaculture Nutrition, 2(3): 129-132. https://doi.org/10.1111/j.1365-2095.1996.tb00051.x.

Millamena, O.M.; Teruel, M.B.; Kanazawa, A.; Teshima, S. 1999. Quantitative dietary requirements of post-larval tiger shrimp, Penaeus monodon, for histidine, isoleucine, leucine, phenylalanine and tryptophan. Aquaculture, 179(1-4): 169-179. https://doi.org/10.1016/S0044-8486(99)00160-X.

Millamena, O.M.; Teruel, M.B.; Reyes, O.S.; Kanazawa, A. 1997. Threonine requirement of juvenile marine shrimp Penaeus monodon. Aquaculture, 151(1-4): 9-14. https://doi.org/10.1016/S0044-8486(96)01486-X.

Mishra, J.K.; Samocha, T.M.; Patnaik, S.; Speed, M.; Gandy, R.L.; Ali, A. 2008. Performance of an intensive nursery system for the Pacific White shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38(1): 2-15. https://doi.org/10.1016/j.aquaeng.2007.10.003.

NRC – National Research Council, 2011. Requirements of fish and shrimp, nutrient requirements of fish and shrimp. Washington: National Academic Press. 376p.

Portz, L.; Furuya, W.M. 2013. Energia, proteína e aminoácidos. In: Fracalossi, D.M; Cyrino, J.E.P. (eds.). Nutriaqua: nutrição e alimentação de espécies de interesse para a aquicultura brasileira. 1a ed. Florianópolis: Aquabio. p. 65-77.

Pragnelli, D.I.; Castro, L.F.; Ali, A.S.; Browdy, C.L.; Zimba, P.V.; Laramore, S.E.; Samocha, T.M. 2016. Some limiting factors in superintensive production of juvenile pacific white shrimp, Litopenaeus vannamei, in no-water-exchange, biofloc-dominated systems. Journal of the World Aquaculture Society, 47(3): 396-413. https://doi.org/10.1111/jwas.12275.

Schneider, O.; Sereti, V.; Eding, E.P.; Verreth, J.A.J. 2007. Heterotrophic bacterial production on solid fish waste:TAN and nitrate as nitrogen source under practical RAS conditions. Bioresource Technology, 98(10): 1924-1930. https://doi.org/10.1016/j.biortech.2006.07.045.

Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; Santo, C.M.E.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56: 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006.

Serra, F.P.; Gaona, C.A.; Furtado, P.S.; Poersch, L.H.; Wasielesky Junior, W. 2015. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International, 23: 1325-1339. https://doi.org/10.1007/s10499-015-9887-6.

Shearer, N. 2002. Experimental design, statistical analysis and modelling of dietary nutrient requirement studies for fish: a critical review. Aquaculture Nutrition, 6(2): 91-102. https://doi.org/10.1046/j.1365-2095.2000.00134.x.

Shiau, S.Y. 1998. Nutrient requirements of penaeid shrimps. Aquaculture, 164(1-4): 77-93. https://doi.org/10.1016/S0044-8486(98)00178-1.

Smith, L.L.; Lee, P.L.; Lawrence, A.L.; Strawn, K. 1985. Growth and digestibility by three sizes of Penaeus vannamei Boone: effects of dietary protein level and protein source. Aquaculture, 46(2): 85-96. https://doi.org/10.1016/0044-8486(85)90193-0.

Soares, M.; Fracalossi, D.M.; Freitas, L.E.L.; Rodrigues, M.S.; Redig, J.C.; Mouriño, J.L.P.; Seiffert, W.Q.; Vieira, F.N. 2015. Replacement of fish meal by protein soybean concentrate in practical diets for Pacific white shrimp. Revista Brasileira de Zootecnia, 44(10): 343-349. https://doi.org/10.1590/S1806-92902015001000001.

Van Wyk, P. 1999. Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In: Van Wyk, P. (ed.). Farming marine shrimp in recirculation freshwater systems. Florida: Florida Department of Agriculture and Consumer Services. p. 125-139.

Van Wyk, P.; Scarpa, J. 1999. Water quality requirements and management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. (eds.). Farming marine shrimp in recirculating freshwater systems. Tallahassee: Florida Department of Agriculture and Consumer Services. p. 141-162.

Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4): 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030.

Widanarni; Yuniasari, D.; Sukenda; Ekasari, J. 2010. Nursery culture performance of Litopenaeus vannamei with probiotics addition and different C/N ratio under laboratory condition. HAYATI Journal of Biosciences, 17(3): 115-119. https://doi.org/10.4308/hjb.17.3.115.

Xu, W.J.; Pan, L.Q. 2014. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei: evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquaculture Research, 45(11): 1842-1851. https://doi.org/10.1111/are.12126.

Xu, W.J.; Morris, T.C.; Samocha, T.M. 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453: 169-175. https://doi.org/10.1016/j.aquaculture.2015.11.021.

Xu, W.J.; Pan, L.Q.; Zhao, D.H.; Huang, J. 2012. Preliminary investigation into the contribution of biofloc on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350-353: 147-153. https://doi.org/10.1016/j.aquaculture.2012.04.003.

Zhang, B. 2011. Influence of the Artificial Substrates on the Attachment Behavior of Litopenaeus vannamei in the Intensive Culture Condition. International Journal of Animal and Veterinary Advances, 3(1): 37-43.
Published
2021-11-15
How to Cite
HENRIQUES, Fernanda Morais et al. PROTEIN REQUIREMENT FOR INITIAL REARING PHASE OF PACIFIC WHITE SHRIMP IN A BIOFLOC SYSTEM. Boletim do Instituto de Pesca, [S.l.], v. 47, nov. 2021. ISSN 1678-2305. Available at: <https://www.pesca.sp.gov.br/boletim/index.php/bip/article/view/1637>. Date accessed: 07 july 2022. doi: https://doi.org/10.20950/1678-2305/bip.2021.47.e653.
Section
Scientific Article

Most read articles by the same author(s)