Growth and enzymatic profile of the Pacific white shrimp fed with Porphyridium cruentum extract

  • Renata Avila OZÓRIO Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Sana Catarina (UFSC)
  • Rafael Garcia LOPES Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Sana Catarina (UFSC)
  • Bruna GÓES GÓES Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Sana Catarina (UFSC)
  • Carlos Peres da SILVA Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC). Campus Universitário Reitor João David Ferreira Lima
  • Roberto Bianchini DERNER Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Sana Catarina (UFSC)
  • Débora Machado FRACALOSSI Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Sana Catarina (UFSC)


The study was developed to evaluate the influence of diet supplementation of a polysaccharide extract from the microalgae Porphyridium cruentum, on weight gain, digestive enzyme activity, and Litopenaeus vannamei juvenile survival. The polysaccharide crude extract from microalgae P. cruentum was added at different concentrations (0, 0.5, 1, 1.5, and 2.0%) in a commercial diet and provided to juvenile L. vannamei (6.6 ± 0.2 g). The shrimps (n =2,000) were fed ad libitum for 30 days in circular tanks with 12 m2 of bottom area (100 shrimp tank-1) and environmental variables (temperature, salinity, dissolved oxygen, photoperiod and level of total ammonia) were controlled. The supplemented diet with 1% crude extract was responsible for the biggest weight gain (7.28 g) in 30 days. The shrimp body muscle centesimal composition and survival were not affected by the polysaccharide extract supplementation. It was observed a shift in the activity of digestive enzymes from the hepato-pancreas to the anterior midgut and mid midgut portions in shrimps with diet supplemented with 1% polysaccharide extract, which may have contributed to a better digestive efficiency. The results indicate that dietary supplementation with crude extract of P. cruentum polysaccharides in a range between 1 and 1.5% increases weight gain and enhances the activity of digestive enzymes in L. vannamei juveniles.


ALEXANDRE, D.; OZÓRIO, R.A.; DERNER, R.B.;FRACALOSSI, D.M.; OLIVEIRA, G.B.;SAMUELS, R.I.; TERRA, W.R.; SILVA, C.P. 2014 Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea.Comparative Biochemistry and Physiology, Part B,172–173: 90–95.

ALMEIDA NETO, M.E. 2011 Relação entre padrão comportamental, estágios do ciclo de muda, e
atividades de enzimas digestivas proteolíticas em juvenis de camarão marinho Litopenaeus
vannamei (CRUSTACEA:PENAEIDAE) – Rio Grande do Norte, Brasil. Natal. 110p. (Tese de
Doutorado. Universidade Federal do Rio Grande do Norte). Disponível em: Acesso
em: 20 jul. 2012.

BOISSON-VIDAL, C.; HAROUN, F.; ELLOUALI, M.;FISCHER, A.M.; AGOSTINI, A.; JOZEFONVICZ, J. 1995 Biological activities of polysaccharides from marine algae. Drugs of the future, 20: 1237-1249.

BOLOGNESI, R.; TERRA, W.R.; FERREIRA, C. 2008 Peritrophic membrane role in enhancing
digestive efficiency: Theoretical and experimental models. Journal of Insect Physiology,
54: 1413–1422.

BRICKNELL, I. e DALMO, R.A. 2005 The use of immunostimulants in fish larval aquaculture.
Fish and Shellfish Immunology, 19 (5): 457-472.

Uso de harina de kelp (Macrocystis pyrifera) en alimentos para camarón. In: CRUZ SUÁREZ,
L.E.; RICQUE MARIE, D.; TAPIA SALAZAR,M.; OLVERA NOVOA, M.A.; CIVERA CERECEDO, R. Avances en Nutrición Acuícola V. Memorias del Quinto Simposio Internacional de Nutrición y Tecnología de Alimentos. MéridaYucatán, 19-22/Nov./2000. Universidad Autónoma de Nuevo León. Monterrey, N.L.México. p.227-266.

DELGADO, J.G.; MOLINA, C.; CAHU, C. 2003 Digestive enzyme activity and food ingesta in
juvenile shrimp Litopenaeus vannamei (Boone,1931) as a function of body weight. Aquaculture
Research, 34: 1403-1411.

DEVAKARAN, S.; FORSTER, I.P.; VELASCOS, M.2004 Limitations on the use of shrimp
Litopenaeus vannamei midgut gland extract for the measurement of in vitro protein digestibility.
Aquaculture, 239: 323-329.

ERLANGER, B.F.; COHEN, W.; KOKOWSKY, N.1961 The Preparation and properties of 2 new
chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95: 271-278.

FARIAS, W.R.L.; VALENTE, A.P.; PEREIRA, M.S.;MOURÃO, P.A. 2000 Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red alga Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated
galactans. Journal of Biological Chemstry, 275(38):29299-29307.

FERREIRA, C.; OLIVEIRA, M.C.; TERRA, W.R. 1990 Comartimentalizatof the digestive process in
Abracris flavolineata (Ortoptera: Acrididae), Insect Biochemestry, 20: 267-274.

GATLIN III, D.M. 2002 Nutrition and fish health. In: HALVER, J.E. and HARDY, R.W. Fish nutrition.
New York: Academis Press. p.671-702.

GATLIN III, D.M.; LI, P.; WANG, X.; BURR, G.S.;CASTILLE, F.; LAWRENCE, A.L. 2006 Potencial
application of probiotics in aquaculture. In:CRUZ SUÁREZ, L.E.; RICQUE MARIE, D.; NIETO LÓPEZ, M.G.; TAPIA SALAZAR, M.;VILLARREAL CAVAZOS, D.; PUELLO CRUZ,A.C.; GARCÍA ORTEGA, A. Avances en nutriciónacuícola VIII. Memorias del VIII Simposio Internacional de Nutrición Acuícola. Mazatlán, Sinaloa, 15-17/Nov. Universidad Autónoma de Nuevo León. Monterrey, N.L., México. p.371-376.

LE MOULLAC, G.; LE GROUMELLEC, M.; ANSQUER, D.; FROSISSARD, S.; LEVY, P. 1997 Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in
relation with the moult cycle: protection against vibrioses. Fish and Shellfish Immunology, 7:

LEMOS, D.; NAVARRETE DEL TORO, A.; CÓRDOVA-MURETA, J.H.; GARCIACARREÑO, F. 2004 Testing feeds and feed ingredients for juvenile pink shrimp Farfantepenaeus paulensis: in vitro determination of protein digestibility and proteinase inhibition.Aquaculture, 239: 307-321.

LEMOS, F.J.A.; CAMPOS, F.A.P.; SILVA, C.P. 1990 Proteinases and amylases of larval midgut of
Zabrotes subfasciatus reared on cowpea (Vigna unguiculata) seeds. Entomologia Experimentalis et Applicata, 56: 219-227.

LIMA, P.C.W.C.; TORRES, V.M.; RODRIGUES,J.A.G.; SOUSA, J.J.; FARIAS, W.R.L. 2009 Effect of sulfated polysaccharides from the marine brown alga Spatoglossum schroeder in Litopenaeus vannamei juveniles. Revista Ciência Agronomica, 40: 78-85.

MELO, J.F.B. 2004 Digestão e Metabolismo de Jundiá Rhamdia quelen submetido a diferentes regimes alimentares. São Carlos. 80p. (Tese de Doutorado. Universidade Federal de São Carlos). Disponível em: http://www. Acesso em: maio 2012.

MONTERO-ROCHA, A. 2006 Immunostimulation of white shrimp (Litopenaeus vannamei) following dietary administration of Ergosan. Journal of Invertebrate Pathology, 91(3): 188-194.

MORTON, R.E. and EVANS, T.A. 1992 Modification of the bicinchoninic acid protein assay to
eliminate lipid interference in determining lipoprotein protein-content. Analytical Biochemistry, 204: 332-334.

NOELTING, G. and BERNFELD, P. 1948 Sur lesenzymes amyloltiques .3. La beta-amylase -
dosage dactivite et controle de labsence dalphaamylase. Helvetica Chimica Acta, 31: 286-290.

SKJERMO, J.; STØRSETH, T.R.; HANSEN, K.;HANDÅ, A.; ØIE, G. 2006 Evaluation of β-(1-3,1-6)-glucans and High-M alginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhuaL.). Aquaculture, 261: 1088–1101.

SMITH, P.K.; KROHN, G.T.; MALLIA, F.H.; GARTNER, M.D.; PROVENZANO, E.K.;FUJIMOTO, N.M.; GOEKE, B.J.; KLENK, D.C.1985 Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150:76-85.

SMITH, V.; BROWN, J.H.; HAUTON, C. 2003 Imumnostimulation in crustaceans: does it really
protect against infection. Fish and Shellfish Immunology, 0: 1-20.

STRICKLAND, J.D.H. and PARSONS, T.R. 1972 A practical handbook of seawater analysis. Bulletin
Fisheries Research Board of Canada, 167: 1- 205.

SUNG, H.H.; KOU, G.H.; SONG, Y.L. 1994 Vibriosis resistance induced by glucan treatment in tiger
shrimp (Penaeus monodon). Fish Pathology, 29:11-17.

TERRA, W.R. 2001 The origin and functions of the insect peritrophic membrane and peritrophic
gel. Archive Insect Biochemistry Physiology, 47:47-61.

TERRA, W.R.; TERRA, I.C.M.; FERREIRA , C.; DE BIACHI , A.G. 1981 Carbodiimide-reactive carboxyl groups at the active site of an insect midgut trehalase. Biochimistry and Biophysic Acta,571: 79 – 85.

TRAIFALGAR, R.F.; KIRA, H.; TUNG, H.T.;MICHAEL, F.R.; LAINING, A.; YOKOYAMA,S.; ISHIKAWA, M.; KOSHIO, S. 2010 Influence of dietary fucoidan supplementation on growth and immunological response of juvenile Marsupenaeus japonicus. Journal of The Aquaculture Society, 41: 235-244.

ZHAO, H.X; CAO, J.M.; WANG, A.L; DU, Z.Y.; HUANG, Y.H.; TIAN, J.X.; LI, G.L.; LAN, H.R. 2012 Effect of the dietary β 1-3-glucan on the immune response of Litopenaeus vannamei exposed to nitrite-N. Aquaculture, 18: 272-280.
How to Cite
OZÓRIO, Renata Avila et al. Growth and enzymatic profile of the Pacific white shrimp fed with Porphyridium cruentum extract. Boletim do Instituto de Pesca, [S.l.], v. 41, n. 1, p. 123 - 131, july 2018. ISSN 1678-2305. Available at: <>. Date accessed: 25 may 2022.