PEPSINA DE TILÁPIA-DO-NILO Oreochromis niloticus SENSÍVEL A METAIS PESADOS

Vagne de Melo OLIVEIRA 1 e Ranilson de Souza BEZERRA 1

¹ Endereço/Address: Laboratório de Enzimologia, Departamento de Bioquímica e Fisiologia, Univ. Federal de Pernambuco Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, Brasil. e-mail: vagne_melo@hotmail.com

Palavras-chave: Biomarcador; metal pesado; protease digestiva; tilápia.

INTRODUÇÃO

Dentre os peixes de água doce, a tilápia nilótica é um dos mais consumidos no Brasil. Atualmente, vários trabalhos com biomonitoramento utilizando esta espécie têm sido realizados, através de marcadores fisiológicos e funcionais. Para tanto, enzimas digestivas têm sido pouco exploradas como uma dessas ferramentas. A pepsina (EC, 3.4.23.1) é a principal enzima digestiva estomacal de peixes, comumente utilizada para aplicação industrial (KAGEYAMA, 2002; OLIVEIRA, 2011), incluída na categoria das endopeptidases que clivam as ligações peptídicas das proteínas pelo seu lado amino terminal dos resíduos de aminoácidos cíclicos aromáticos, como a tirosina e a triptotirosina, rompendo as longas cadeias polipeptídicas em peptídeos menores e em alguns aminoácidos livres (KOOLMAN e ROEHM, 2005). A enzima ativa é lançada a partir do seu zimogênio - o pepsinogênio - por autocatálise na presença de ácido clorídrico (HCl). É uma aspartil protease (DE LUCA et al., 2009), por depender de resíduos do ácido aspártico para sua atividade catalítica. Para a maioria das espécies de teleósteos, esta enzima apresenta pH ótimo em torno de 2 (RAO et al., 1998), enquanto especificamente para tilápia é de 2,5, além de temperatura ótima de 35 °C (EL-BELTAGY et al., 2004), tendo na hemoglobina seu principal e mais utilizado substrato (KLOMKLAO, 2008).

Nos últimos anos, os níveis de contaminantes no ambiente aquático têm aumentado como consequência das atividades antropogênicas. O biomonitoramento é importante para identificar prováveis mudanças comportamentais causadas por diversos elementos metálicos, tornando-se necessário, dessa forma, investigar sua atividade em condições normais e de exposição. Este trabalho teve por objetivo avaliar a atividade da pepsina de alevinos de tilápias-do-Nilo (*Oreochromis niloticus*), expostos ao Cloreto de Cobre (CuCl₂), Cloreto de Ferro (FeCl₂) e ao Sulfato de Alumínio [Al₂(SO₄)₃] em concentrações definidas de 3 μg/mililitro.

MATERIAL E MÉTODOS

Os animais utilizados foram provenientes da estação de aquicultura da UFRPE. Para tanto, 36 alevinos de tilápias, entre machos e fêmeas, foram cultivados durante um período de 240 horas, sendo 120 horas de adaptação e 120 de exposição ao contaminante, em aquários com 60 litros de água, todos com alimentação *ad libitum*, sistema estático de água e fotoperíodo de 12:12 horas. Os animais foram divididos em 4 grupos experimentais, sendo: grupo controle (biometria no momento do abate, com peso e comprimento totais: $10,10 \pm 0,70$ cm e $10,0 \pm 0,01$ g), grupo exposto a 3 μ g/mL de CuCl₂ ($10,10 \pm 0,61$ cm e $9,56 \pm 0,09$ g); grupo exposto a 3 μ g/mL de FeCl₂ ($9,0 \pm 0,85$ cm e $10,0 \pm 0,05$ g); e grupo exposto a 3 μ g/mL de Al₂(SO₄)₃ ($10,0 \pm 0,51$ cm e $10,19 \pm 0,50$ g).

Os parâmetros físico-químicos de qualidade de água foram mensurados. Após o período de cultivo, os animais foram sacrificados por imersão em gelo, logo após, suas vísceras estomacais serem coletadas, maceradas e homogeneizadas em tampão Glicina-HCl 0,1 M pH 2,0 com 0,9% de NaCl (p/v), obtendo-se o extrato bruto de um "pool" de cada grupo. A atividade enzimática foi determinada utilizando 350 µL de tampão Glicina-HCl 0,1 M pH 2,0, 50 µL de extrato e 100 µL de hemoglobina como substrato específico. O branco da amostra foi formado por 150 µL de hemoglobina com 350 µL de tampão Glicina-HCl 0,1 M pH 2,0. Após o período de incubação de 60 min, foram acrescidos 500 µL do ácido tricloroacético a 10% num novo período de incubação de por 15 min. Após isso, as amostras foram centrifugadas por 10 min a 8000 rpm. Em seguida, foi realizada leitura no espectrômetro a 280 nm de absorbância. A atividade residual do grupo controle foi tida como 100%, para todas as exposições (NALINANON *et al.*, 2010).

RESULTADOS E DISCUSSÃO

O peso molecular da pepsina em tilápias nilóticas é de 31,00 kDa. A atividade enzimática é inibida quase que completamente pela pepstatina A (especifico para aspartato proteases), um inibidor competitivo, que se liga fortemente aos resíduos do sítio ativo da enzima e parcialmente pelo EDTA (especifico para metaloproteases). Em contrapartida, a atividade aumenta quando na presença de cátions bivalentes, como o CaCl₂, MgCl₂ e o CoCl₂ (KLOMKLAO *et al.*, 2007).

As médias dos parâmetros de qualidade de água obtidas neste estudo foram: $27,66 \pm 0,49$ °C; pH 7,0 $\pm 0,34$; e O.D. $5,47 \pm 1,55$ mg.L-1 para o grupo controle; $27,44 \pm 0,79$ °C; pH 7,32 $\pm 0,25$; e O.D. $5,25 \pm 0,49$ mg.L-1 para o grupo exposto a CuCl₂; $27,50 \pm 0,80$ °C;

pH 6,62 \pm 0,40; e O.D. 5,00 \pm 0,35 mg.L⁻¹ para o grupo exposto ao FeCl₂; 27,30 \pm 0,07 °C; pH 6,26 \pm 0,10; e O.D. 5,30 \pm 0,28 mg.L⁻¹ para o grupo exposto ao Al₂(SO₄)₃. No concernente a atividade enzimática, a residual da pepsina exposta aos metais CuCl₂, FeCl₂ e Al₂(SO₄)₃ foi 72,14 \pm 0,97%; 52,93 \pm 6,61%; e 65,72 \pm 7,52%, respectivamente.

CONCLUSÃO

Os resultados sugerem a utilização da pepsina de tilápia nilótica como ferramenta de auxilio para o monitoramento de áreas impactadas pelos metais submetidos neste experimento.

REFERÊNCIAS

- DE LUCA, V.; MARIA, G.; MAURO, G.; CATARA, G.; CARGINALE, V.; RUGGIERO, G.; CAPASSO, A.; PARISI, E.; BRIER, S.; ENGEN, J.; CAPASSO, C. 2009 Aspartic proteinases in Antarctic fish. *Marine Genomics*, 2(1): 1–10.
- EL-BELTAGY, A.E.; EL-ADAWY, T.A.; RAHMA, E.H.; EL-BEDAWEY, A.A. 2004 Purification and characterization of an acidic protease from the viscera of bolti fish (*Tilapia nilótica*). Food Chemistry, 86(1): 33–39.
- KAGEYAMA, T. 2002 Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. *Cellular and Molecular Life Sciences*, 59(2): 288–306.
- KLOMKLAO, S. 2008 Digestive proteinases from marine organisms and their applications. Songklankarin Journal of Science and Technology, 30(1): 37–46.
- KOOLMAN, J. e ROHEM, K.H. 2005 Bioquímica: texto e atlas. 3 ed. Porto Alegre. 478p.
- NALINANON, S.; BENJAKUL, S.; KISHIMURA, H. 2010 Biochemical properties of pepsinogen and pepsin from the stomach of albacore tuna (*Thunnus alalunga*). *Food Chemistry*, 121(1): 49–55.
- OLIVEIRA, V.M. 2011 Aplicação de hidrolases de tilápias-do-nilo (Oreochromis niloticus) como biomarcadores de exposição ao alumínio. 77p. (Dissertação de Mestrado em Ciências Biológicas. Universidade Federal de Pernambuco).
- RAO, M.B.; TANKSALE, A.M.; GHATGE, M.S.; DESHPANDE, V.V. 1998 Molecular and biotechnological aspects of microbial proteases. *Microbiology and Molecular Biology Reviews*, 62(3): 597-635.